码迷,mamicode.com
首页 > 其他好文 > 详细

数学——泰勒公式

时间:2018-10-13 02:44:22      阅读:141      评论:0      收藏:0      [点我收藏+]

标签:rac   ocs   htm   公式   poi   好的   数学   inline   har   

开篇

为啥需要泰勒展开公式?

当我们研究复杂函数(代入一个x可以得到它的y = 输入和输出)的时候,很难搞清楚该函数的曲线或者描述的关系,然而我们仅仅关心某个点附近的性质,这个时候我们就可以用一次函数在该点处近似代替这个复杂函数在该点处的性质;如果要增加精度,可以用二次函数近似代替。

一元函数的泰勒展开

给定一个函数,给定某个点,需要在这个点附近采用简单的函数近似,我们的方法是在该点处泰勒展开:
目标函数,也就是\(f(x)\)已知
\[f(x)\]
给定point,也就是\(x_0\)已知
\[x_0\]
\(x_0\)附近用多项式函数近似\(f(x)\),有
\[f(x) = f(x_0) + \frac{df(x)}{dx}|_{x=x_0}(x-x_0) + \frac{\frac{d^2f(x)}{{dx}^2}|_{x=x_0}}{2!}(x-x_0)^2 + \cdots\]
\[f(x) = \sum_{n=0}^\infty [f^{(n)}(x_0)\times \frac{1}{n!}(x-x_0)^n]\]

好的理解泰勒公式的资料

  1. 泰勒公式的展开细节解析
  2. 如何通俗地解释泰勒公式?
  3. 浅显易懂——泰勒展开

数学——泰勒公式

标签:rac   ocs   htm   公式   poi   好的   数学   inline   har   

原文地址:https://www.cnblogs.com/brightyuxl/p/9781368.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!