标签:sqrt put 找规律 void for his double matrix ble
InputThe input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
OutputFor each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.Sample Input
4 1 2 3 4
Sample Output
4 4 4 4
题解:大数.找规律.a[n]=4*a[n-1]-a[n-2](附上C++大数模板)
#include <bits/stdc++.h> #define rep(i,a,n) for(int i=a;i<n;++i) #define per(i,a,n) for(int i=n-1;i>=a;--i) #define fi first #define se second using namespace std; // base and base_digits must be consistent constexpr int base = 1000000000; constexpr int base_digits = 9; struct bigint{ vector<int> z; int sign; bigint() : sign(1) {} bigint(long long v) { *this = v; } bigint& operator=(long long v) { sign = v < 0 ? -1 : 1; v*=sign; z.clear(); for(; v > 0; v = v / base) z.push_back((int)(v % base)); return *this; } bigint(const string& s) { read(s); } bigint& operator+=(const bigint& other) { if (sign == other.sign) { for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) { if(i==z.size()) z.push_back(0); z[i] += carry + (i < other.z.size() ? other.z[i] : 0); carry = z[i] >= base; if(carry) z[i] -= base; } } else if (other != 0 /* prevent infinite loop */) { *this -= -other; } return *this; } friend bigint operator+(bigint a, const bigint& b) { return a += b; } bigint& operator-=(const bigint& other) { if (sign == other.sign) { if (sign == 1 && *this >= other || sign == -1 && *this <= other) { for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) { z[i] -= carry + (i < other.z.size() ? other.z[i] : 0); carry = z[i] < 0; if(carry) z[i] += base; } trim(); } else { *this = other - *this; this->sign = -this->sign; } } else *this += -other; return *this; } friend bigint operator - (bigint a,const bigint& b) { return a -= b; } bigint& operator*=(int v) { if(v<0) sign=-sign,v=-v; for(int i=0,carry=0;i<z.size() || carry;++i) { if(i==z.size()) z.push_back(0); long long cur = (long long)z[i] * v + carry; carry = (int)(cur / base); z[i] = (int)(cur % base); } trim(); return *this; } bigint operator*(int v) const { return bigint(*this) *= v; } friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1) { int norm = base / (b1.z.back() + 1); bigint a = a1.abs() * norm; bigint b = b1.abs() * norm; bigint q, r; q.z.resize(a.z.size()); for (int i = (int)a.z.size() - 1; i >= 0; i--) { r*=base; r+=a.z[i]; int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0; int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0; int d = (int)(((long long)s1 * base + s2) / b.z.back()); r -= b * d; while(r < 0) r+=b,--d; q.z[i] = d; } q.sign = a1.sign * b1.sign; r.sign = a1.sign; q.trim(); r.trim(); return {q, r / norm}; } friend bigint sqrt(const bigint& a1) { bigint a=a1; while(a.z.empty()||a.z.size()%2==1) a.z.push_back(0); int n = a.z.size(); int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]); int norm = base / (firstDigit + 1); a *= norm; a *= norm; while(a.z.empty()||a.z.size()%2==1) a.z.push_back(0); bigint r = (long long)a.z[n - 1] * base + a.z[n - 2]; firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]); int q = firstDigit; bigint res; for (int j = n / 2 - 1; j >= 0; j--) { for(;;--q) { bigint r1=(r-(res*2*base+q)*q)*base*base+(j>0?(long long)a.z[2*j-1]*base+a.z[2*j-2]:0); if(r1>=0) { r=r1; break; } } res*=base;res+=q; if(j>0) { int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0; int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0; int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()]:0; q = (int)(((long long)d1*base*base+(long long)d2*base+d3)/(firstDigit*2)); } } res.trim(); return res / norm; } bigint operator/(const bigint& v) const { return divmod(*this, v).first; } bigint operator%(const bigint& v) const { return divmod(*this, v).second; } bigint& operator/=(int v) { if(v<0) sign=-sign,v=-v; for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i) { long long cur = z[i] + rem * (long long)base; z[i] = (int)(cur / v); rem = (int)(cur % v); } trim(); return *this; } bigint operator/(int v) const { return bigint(*this) /= v; } int operator%(int v) const { if(v<0) v=-v; int m=0; for(int i=(int)z.size()-1;i>=0;--i) m=(int)((z[i]+m*(long long)base)%v); return m * sign; } bigint& operator*=(const bigint& v) { *this = *this * v; return *this; } bigint& operator/=(const bigint& v) { *this = *this / v; return *this; } bool operator<(const bigint& v) const { if(sign!=v.sign) return sign < v.sign; if(z.size()!=v.z.size()) return z.size()*sign<v.z.size()*v.sign; for(int i = (int)z.size() - 1; i >= 0; i--) if(z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign; return false; } bool operator>(const bigint& v) const { return v < *this; } bool operator<=(const bigint& v) const { return !(v < *this); } bool operator>=(const bigint& v) const { return !(*this < v); } bool operator==(const bigint& v) const { return !(*this < v) && !(v < *this); } bool operator!=(const bigint& v) const { return *this < v || v < *this; } void trim() { while(!z.empty() && z.back() == 0) z.pop_back(); if(z.empty()) sign = 1; } bool isZero() const { return z.empty(); } friend bigint operator-(bigint v) { if(!v.z.empty()) v.sign = -v.sign; return v; } bigint abs() const { return sign == 1 ? *this : -*this; } long long longValue() const { long long res = 0; for(int i = (int)z.size() - 1; i >= 0; i--) res = res * base + z[i]; return res * sign; } friend bigint gcd(const bigint& a, const bigint& b) { return b.isZero() ? a : gcd(b, a % b); } friend bigint lcm(const bigint& a, const bigint& b) { return a / gcd(a, b) * b; } void read(const string& s) { sign = 1; z.clear(); int pos = 0; while(pos < s.size() && (s[pos] == ‘-‘ || s[pos] == ‘+‘)) { if(s[pos] == ‘-‘) sign = -sign; ++pos; } for(int i=(int)s.size()-1;i>=pos;i-=base_digits) { int x=0; for(int j=max(pos,i-base_digits+1);j<=i;j++) x=x*10+s[j]-‘0‘; z.push_back(x); } trim(); } friend istream& operator>>(istream& stream, bigint& v) { string s; stream >> s; v.read(s); return stream; } friend ostream& operator<<(ostream& stream, const bigint& v) { if(v.sign == -1) stream << ‘-‘; stream << (v.z.empty() ? 0 : v.z.back()); for(int i = (int)v.z.size() - 2; i >= 0; --i) stream << setw(base_digits) << setfill(‘0‘) << v.z[i]; return stream; } static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits) { vector<long long> p(max(old_digits, new_digits) + 1); p[0] = 1; for(int i=1;i<p.size();i++) p[i]=p[i-1]*10; vector<int> res; long long cur = 0; int cur_digits = 0; for(int v : a) { cur += v * p[cur_digits]; cur_digits += old_digits; while (cur_digits >= new_digits) { res.push_back(int(cur % p[new_digits])); cur /= p[new_digits]; cur_digits -= new_digits; } } res.push_back((int)cur); while(!res.empty() && res.back()==0) res.pop_back(); return res; } typedef vector<long long> vll; static vll karatsubaMultiply(const vll& a, const vll& b) { int n=a.size(); vll res(n + n); if(n <= 32) { for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) res[i + j] += a[i] * b[j]; return res; } int k = n >> 1; vll a1(a.begin(), a.begin() + k); vll a2(a.begin() + k, a.end()); vll b1(b.begin(), b.begin() + k); vll b2(b.begin() + k, b.end()); vll a1b1 = karatsubaMultiply(a1, b1); vll a2b2 = karatsubaMultiply(a2, b2); for(int i=0;i<k;i++) a2[i]+=a1[i]; for(int i=0;i<k;i++) b2[i]+=b1[i]; vll r = karatsubaMultiply(a2, b2); for(int i=0;i<a1b1.size();i++) r[i]-=a1b1[i]; for(int i=0;i<a2b2.size();i++) r[i]-=a2b2[i]; for(int i=0;i<r.size();i++) res[i+k]+=r[i]; for(int i=0;i<a1b1.size();i++) res[i]+=a1b1[i]; for(int i = 0;i<a2b2.size();i++) res[i+n]+=a2b2[i]; return res; } bigint operator*(const bigint& v) const { vector<int> a6=convert_base(this->z,base_digits,6); vector<int> b6=convert_base(v.z,base_digits,6); vll a(a6.begin(),a6.end()); vll b(b6.begin(),b6.end()); while(a.size()<b.size()) a.push_back(0); while(b.size()<a.size()) b.push_back(0); while(a.size()&(a.size()-1)) a.push_back(0),b.push_back(0); vll c=karatsubaMultiply(a, b); bigint res; res.sign = sign * v.sign; for (int i = 0, carry = 0; i < c.size(); i++) { long long cur = c[i] + carry; res.z.push_back((int)(cur % 1000000)); carry = (int)(cur / 1000000); } res.z = convert_base(res.z, 6, base_digits); res.trim(); return res; } }; bigint qpow(bigint a,bigint b){ bigint ans=1; while(b!=0){ if(b%2){ ans= ans*a; } b/=2; a= a*a; } return ans; } struct Matrix { bigint a[2][2]; Matrix() { rep(i,0,2){ rep(j,0,2){ a[i][j]=0; } } } Matrix operator * (const Matrix y) { Matrix ans; for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) for(int k = 0; k < 2; k++) ans.a[i][j] = ans.a[i][j] + (a[i][k]*y.a[k][j]); return ans; } Matrix operator = (const Matrix y) { for(int i=0;i<2;i++) for(int j=0;j<2;j++) a[i][j]=y.a[i][j]; } Matrix operator *= (const Matrix y) { Matrix ans; for(int i=0;i<2;i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) ans.a[i][j] = ans.a[i][j] + (a[i][k]*y.a[k][j]); for(int i=0;i<2;i++) for(int j=0;j<2;j++) a[i][j]=ans.a[i][j]; } }; Matrix qpow(bigint x) { Matrix ans; ans.a[0][0]=ans.a[1][1]=1; //单位矩阵 Matrix mul; mul.a[0][0]=4; mul.a[0][1]=-1; mul.a[1][0]=1; mul.a[1][1]=0; while(x!=0) { if(x%2!=0) ans = ans*mul; mul = mul* mul; x/=2; } return ans; } bigint ans[1005]; void solve(){ ans[0]=(bigint)4; ans[1]=(bigint)14; ans[2]=(bigint)52; rep(i,2,200){ ans[i]=(bigint)4*ans[i-1]-ans[i-2]; // cout<<ans[i]<<endl; } } int main() { solve(); int t;cin>>t; while(t--){ bigint n; cin>>n; rep(i,0,200){ if(ans[i]>=n){ cout<<ans[i]<<endl; break; } } } }
2017 ACM/ICPC 沈阳 F题 Heron and his triangle
标签:sqrt put 找规律 void for his double matrix ble
原文地址:https://www.cnblogs.com/songorz/p/9784961.html