标签:nio cts first mat you int diff self else
变换
map //abstract class RDD
/** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U] = withScope { val cleanF = sc.clean(f) new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF)) }
filter
/** * Return a new RDD containing only the elements that satisfy a predicate. */ def filter(f: T => Boolean): RDD[T] = withScope { val cleanF = sc.clean(f) new MapPartitionsRDD[T, T]( this, (context, pid, iter) => iter.filter(cleanF), preservesPartitioning = true) }
flatMap
/** * Return a new RDD by first applying a function to all elements of this * RDD, and then flattening the results. */ def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = withScope { val cleanF = sc.clean(f) new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF)) }
mapPartitions
/** * Return a new RDD by applying a function to each partition of this RDD. * * `preservesPartitioning` indicates whether the input function preserves the partitioner, which * should be `false` unless this is a pair RDD and the input function doesn‘t modify the keys. */ def mapPartitions[U: ClassTag]( f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = withScope { val cleanedF = sc.clean(f) new MapPartitionsRDD( this, (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(iter), preservesPartitioning) }
mapPartitionsWithIndex
/** * Return a new RDD by applying a function to each partition of this RDD, while tracking the index * of the original partition. * * `preservesPartitioning` indicates whether the input function preserves the partitioner, which * should be `false` unless this is a pair RDD and the input function doesn‘t modify the keys. */ def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U] = withScope { val cleanedF = sc.clean(f) new MapPartitionsRDD( this, (context: TaskContext, index: Int, iter: Iterator[T]) => cleanedF(index, iter), preservesPartitioning) }
sample
/** * Return a sampled subset of this RDD. * * @param withReplacement can elements be sampled multiple times (replaced when sampled out) * @param fraction expected size of the sample as a fraction of this RDD‘s size * without replacement: probability that each element is chosen; fraction must be [0, 1] * with replacement: expected number of times each element is chosen; fraction must be greater * than or equal to 0 * @param seed seed for the random number generator * * @note This is NOT guaranteed to provide exactly the fraction of the count * of the given [[RDD]]. */ def sample( withReplacement: Boolean, fraction: Double, seed: Long = Utils.random.nextLong): RDD[T] = { require(fraction >= 0, s"Fraction must be nonnegative, but got ${fraction}") withScope { require(fraction >= 0.0, "Negative fraction value: " + fraction) if (withReplacement) { new PartitionwiseSampledRDD[T, T](this, new PoissonSampler[T](fraction), true, seed) } else { new PartitionwiseSampledRDD[T, T](this, new BernoulliSampler[T](fraction), true, seed) } } }
union
/** * Return the union of this RDD and another one. Any identical elements will appear multiple * times (use `.distinct()` to eliminate them). */ def union(other: RDD[T]): RDD[T] = withScope { sc.union(this, other) }
intersection
/** * Return the intersection of this RDD and another one. The output will not contain any duplicate * elements, even if the input RDDs did. * * @note This method performs a shuffle internally. */ def intersection(other: RDD[T]): RDD[T] = withScope { this.map(v => (v, null)).cogroup(other.map(v => (v, null))) .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty } .keys } /** * Return the intersection of this RDD and another one. The output will not contain any duplicate * elements, even if the input RDDs did. * * @note This method performs a shuffle internally. * * @param partitioner Partitioner to use for the resulting RDD */ def intersection( other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T] = withScope { this.map(v => (v, null)).cogroup(other.map(v => (v, null)), partitioner) .filter { case (_, (leftGroup, rightGroup)) => leftGroup.nonEmpty && rightGroup.nonEmpty } .keys } /** * Return the intersection of this RDD and another one. The output will not contain any duplicate * elements, even if the input RDDs did. Performs a hash partition across the cluster * * @note This method performs a shuffle internally. * * @param numPartitions How many partitions to use in the resulting RDD */ def intersection(other: RDD[T], numPartitions: Int): RDD[T] = withScope { intersection(other, new HashPartitioner(numPartitions)) }
distinct
/** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope { map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1) } /** * Return a new RDD containing the distinct elements in this RDD. */ def distinct(): RDD[T] = withScope { distinct(partitions.length) }
groupByKey //class PairRDDFunctions
/** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with the existing partitioner/parallelism level. The ordering of elements * within each group is not guaranteed, and may even differ each time the resulting RDD is * evaluated. * * @note This operation may be very expensive. If you are grouping in order to perform an * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey` * or `PairRDDFunctions.reduceByKey` will provide much better performance. */ def groupByKey(): RDD[(K, Iterable[V])] = self.withScope { groupByKey(defaultPartitioner(self)) }
/** * Group the values for each key in the RDD into a single sequence. Allows controlling the * partitioning of the resulting key-value pair RDD by passing a Partitioner. * The ordering of elements within each group is not guaranteed, and may even differ * each time the resulting RDD is evaluated. * * @note This operation may be very expensive. If you are grouping in order to perform an * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey` * or `PairRDDFunctions.reduceByKey` will provide much better performance. * * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]]. */ def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope { // groupByKey shouldn‘t use map side combine because map side combine does not // reduce the amount of data shuffled and requires all map side data be inserted // into a hash table, leading to more objects in the old gen. val createCombiner = (v: V) => CompactBuffer(v) val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2 val bufs = combineByKeyWithClassTag[CompactBuffer[V]]( createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false) bufs.asInstanceOf[RDD[(K, Iterable[V])]] } /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with into `numPartitions` partitions. The ordering of elements within * each group is not guaranteed, and may even differ each time the resulting RDD is evaluated. * * @note This operation may be very expensive. If you are grouping in order to perform an * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey` * or `PairRDDFunctions.reduceByKey` will provide much better performance. * * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]]. */ def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = self.withScope { groupByKey(new HashPartitioner(numPartitions)) }
reduceByKey
/** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. */ def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope { combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner) } /** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions. */ def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = self.withScope { reduceByKey(new HashPartitioner(numPartitions), func) } /** * Merge the values for each key using an associative and commutative reduce function. This will * also perform the merging locally on each mapper before sending results to a reducer, similarly * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/ * parallelism level. */ def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope { reduceByKey(defaultPartitioner(self), func) }
aggregateByKey
/** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U‘s, * as in scala.TraversableOnce. The former operation is used for merging values within a * partition, and the latter is used for merging values between partitions. To avoid memory * allocation, both of these functions are allowed to modify and return their first argument * instead of creating a new U. */ def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)] = self.withScope { // Serialize the zero value to a byte array so that we can get a new clone of it on each key val zeroBuffer = SparkEnv.get.serializer.newInstance().serialize(zeroValue) val zeroArray = new Array[Byte](zeroBuffer.limit) zeroBuffer.get(zeroArray) lazy val cachedSerializer = SparkEnv.get.serializer.newInstance() val createZero = () => cachedSerializer.deserialize[U](ByteBuffer.wrap(zeroArray)) // We will clean the combiner closure later in `combineByKey` val cleanedSeqOp = self.context.clean(seqOp) combineByKeyWithClassTag[U]((v: V) => cleanedSeqOp(createZero(), v), cleanedSeqOp, combOp, partitioner) } /** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U‘s, * as in scala.TraversableOnce. The former operation is used for merging values within a * partition, and the latter is used for merging values between partitions. To avoid memory * allocation, both of these functions are allowed to modify and return their first argument * instead of creating a new U. */ def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)] = self.withScope { aggregateByKey(zeroValue, new HashPartitioner(numPartitions))(seqOp, combOp) } /** * Aggregate the values of each key, using given combine functions and a neutral "zero value". * This function can return a different result type, U, than the type of the values in this RDD, * V. Thus, we need one operation for merging a V into a U and one operation for merging two U‘s, * as in scala.TraversableOnce. The former operation is used for merging values within a * partition, and the latter is used for merging values between partitions. To avoid memory * allocation, both of these functions are allowed to modify and return their first argument * instead of creating a new U. */ def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)] = self.withScope { aggregateByKey(zeroValue, defaultPartitioner(self))(seqOp, combOp) }
sortByKey //class OrderedRDDFunctions;全排序
sortBy //全排序,调用了sortByKey
/** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ // TODO: this currently doesn‘t work on P other than Tuple2! def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length) : RDD[(K, V)] = self.withScope { val part = new RangePartitioner(numPartitions, self, ascending) new ShuffledRDD[K, V, V](self, part) .setKeyOrdering(if (ascending) ordering else ordering.reverse) }
join //key可重复
/** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { join(other, defaultPartitioner(self, other)) } /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))] = self.withScope { join(other, new HashPartitioner(numPartitions)) }
cogroup //协分组,key不重复显示
/** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], partitioner: Partitioner) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope { if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) { throw new SparkException("HashPartitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K](Seq(self, other1, other2, other3), partitioner) cg.mapValues { case Array(vs, w1s, w2s, w3s) => (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W1]], w2s.asInstanceOf[Iterable[W2]], w3s.asInstanceOf[Iterable[W3]]) } } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope { if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) { throw new SparkException("HashPartitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K](Seq(self, other), partitioner) cg.mapValues { case Array(vs, w1s) => (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]]) } } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope { if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) { throw new SparkException("HashPartitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K](Seq(self, other1, other2), partitioner) cg.mapValues { case Array(vs, w1s, w2s) => (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W1]], w2s.asInstanceOf[Iterable[W2]]) } } /** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)]) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope { cogroup(other1, other2, other3, defaultPartitioner(self, other1, other2, other3)) } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope { cogroup(other, defaultPartitioner(self, other)) } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope { cogroup(other1, other2, defaultPartitioner(self, other1, other2)) } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W]( other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope { cogroup(other, new HashPartitioner(numPartitions)) } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = self.withScope { cogroup(other1, other2, new HashPartitioner(numPartitions)) } /** * For each key k in `this` or `other1` or `other2` or `other3`, * return a resulting RDD that contains a tuple with the list of values * for that key in `this`, `other1`, `other2` and `other3`. */ def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], numPartitions: Int) : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = self.withScope { cogroup(other1, other2, other3, new HashPartitioner(numPartitions)) }
cartesian //笛卡尔积
/** * Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of * elements (a, b) where a is in `this` and b is in `other`. */ def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)] = withScope { new CartesianRDD(sc, this, other) }
pipe
coalesce //改变分区数,减少分区不用shuffle,增加必须开启shuffle否则无效
/** * Return a new RDD that is reduced into `numPartitions` partitions. * * This results in a narrow dependency, e.g. if you go from 1000 partitions * to 100 partitions, there will not be a shuffle, instead each of the 100 * new partitions will claim 10 of the current partitions. * * However, if you‘re doing a drastic coalesce, e.g. to numPartitions = 1, * this may result in your computation taking place on fewer nodes than * you like (e.g. one node in the case of numPartitions = 1). To avoid this, * you can pass shuffle = true. This will add a shuffle step, but means the * current upstream partitions will be executed in parallel (per whatever * the current partitioning is). * * @note With shuffle = true, you can actually coalesce to a larger number * of partitions. This is useful if you have a small number of partitions, * say 100, potentially with a few partitions being abnormally large. Calling * coalesce(1000, shuffle = true) will result in 1000 partitions with the * data distributed using a hash partitioner. The optional partition coalescer * passed in must be serializable. */ def coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty) (implicit ord: Ordering[T] = null) : RDD[T] = withScope { require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.") if (shuffle) { /** Distributes elements evenly across output partitions, starting from a random partition. */ val distributePartition = (index: Int, items: Iterator[T]) => { var position = (new Random(index)).nextInt(numPartitions) items.map { t => // Note that the hash code of the key will just be the key itself. The HashPartitioner // will mod it with the number of total partitions. position = position + 1 (position, t) } } : Iterator[(Int, T)] // include a shuffle step so that our upstream tasks are still distributed new CoalescedRDD( new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition), new HashPartitioner(numPartitions)), numPartitions, partitionCoalescer).values } else { new CoalescedRDD(this, numPartitions, partitionCoalescer) } }
repartition //改变分区数,有shuffle
/** * Return a new RDD that has exactly numPartitions partitions. * * Can increase or decrease the level of parallelism in this RDD. Internally, this uses * a shuffle to redistribute data. * * If you are decreasing the number of partitions in this RDD, consider using `coalesce`, * which can avoid performing a shuffle. */ def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope { coalesce(numPartitions, shuffle = true) }
repartitionAndSortWithinPartitions //升序
/** * Repartition the RDD according to the given partitioner and, within each resulting partition, * sort records by their keys. * * This is more efficient than calling `repartition` and then sorting within each partition * because it can push the sorting down into the shuffle machinery. */ def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)] = self.withScope { new ShuffledRDD[K, V, V](self, partitioner).setKeyOrdering(ordering) }
动作
reduce
collect
count
first
take
takeSample
takeOrdered
saveAsTextFile
saveAsSequenceFile
saveAsObjectFile
countByKey
foreach
标签:nio cts first mat you int diff self else
原文地址:https://www.cnblogs.com/lybpy/p/9788236.html