标签:[1] tree solution input pos ogr bcd sel code
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / gr eat / \ / g r e at / a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / rg eat / \ / r g e at / a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / rg tae / \ / r g ta e / t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Example 1:
Input: s1 = "great", s2 = "rgeat" Output: true
Example 2:
Input: s1 = "abcde", s2 = "caebd" Output: false
一种爬行字符串,就是说假如把一个字符串当做一个二叉树的根,然后它的非空子字符串是它的子节点,然后交换某个子字符串的两个子节点,重新爬行回去形成一个新的字符串,这个新字符串和原来的字符串互为爬行字符串。
解法1: 递归Recursion
解法2: 动态规划Dynamic Programming
Java:
public class Solution { public boolean isScramble(String s1, String s2) { if (s1.equals(s2)) return true; int[] letters = new int[26]; for (int i=0; i<s1.length(); i++) { letters[s1.charAt(i)-‘a‘]++; letters[s2.charAt(i)-‘a‘]--; } for (int i=0; i<26; i++) if (letters[i]!=0) return false; for (int i=1; i<s1.length(); i++) { if (isScramble(s1.substring(0,i), s2.substring(0,i)) && isScramble(s1.substring(i), s2.substring(i))) return true; if (isScramble(s1.substring(0,i), s2.substring(s2.length()-i)) && isScramble(s1.substring(i), s2.substring(0,s2.length()-i))) return true; } return false; } }
Python:
# Time: O(n^4) # Space: O(n^3) class Solution(object): # @return a boolean def isScramble(self, s1, s2): if not s1 or not s2 or len(s1) != len(s2): return False if s1 == s2: return True result = [[[False for j in xrange(len(s2))] for i in xrange(len(s1))] for n in xrange(len(s1) + 1)] for i in xrange(len(s1)): for j in xrange(len(s2)): if s1[i] == s2[j]: result[1][i][j] = True for n in xrange(2, len(s1) + 1): for i in xrange(len(s1) - n + 1): for j in xrange(len(s2) - n + 1): for k in xrange(1, n): if result[k][i][j] and result[n - k][i + k][j + k] or result[k][i][j + n - k] and result[n - k][i + k][j]: result[n][i][j] = True break return result[n][0][0]
C++: Recursion
class Solution { public: bool isScramble(string s1, string s2) { if(s1==s2) return true; int len = s1.length(); int count[26] = {0}; for(int i=0; i<len; i++) { count[s1[i]-‘a‘]++; count[s2[i]-‘a‘]--; } for(int i=0; i<26; i++) { if(count[i]!=0) return false; } for(int i=1; i<=len-1; i++) { if( isScramble(s1.substr(0,i), s2.substr(0,i)) && isScramble(s1.substr(i), s2.substr(i))) return true; if( isScramble(s1.substr(0,i), s2.substr(len-i)) && isScramble(s1.substr(i), s2.substr(0,len-i))) return true; } return false; } };
C++: Recursion
class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; string str1 = s1, str2 = s2; sort(str1.begin(), str1.end()); sort(str2.begin(), str2.end()); if (str1 != str2) return false; for (int i = 1; i < s1.size(); ++i) { string s11 = s1.substr(0, i); string s12 = s1.substr(i); string s21 = s2.substr(0, i); string s22 = s2.substr(i); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; s21 = s2.substr(s1.size() - i); s22 = s2.substr(0, s1.size() - i); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; } return false; } };
C++: DP
class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; int n = s1.size(); vector<vector<vector<bool> > > dp (n, vector<vector<bool> >(n, vector<bool>(n + 1, false))); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { dp[i][j][1] = s1[i] == s2[j]; } } for (int len = 2; len <= n; ++len) { for (int i = 0; i <= n - len; ++i) { for (int j = 0; j <= n - len; ++j) { for (int k = 1; k < len; ++k) { if ((dp[i][j][k] && dp[i + k][j + k][len - k]) || (dp[i + k][j][len - k] && dp[i][j + len - k][k])) { dp[i][j][len] = true; } } } } } return dp[0][0][n]; } };
C++:
class Solution { public: bool isScramble(string s1, string s2) { if (s1.size() != s2.size()) return false; if (s1 == s2) return true; int n = s1.size(); vector<vector<vector<bool> > > dp (n, vector<vector<bool> >(n, vector<bool>(n + 1, false))); for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { for (int k = 1; k <= n - max(i, j); ++k) { if (s1.substr(i, k) == s2.substr(j, k)) { dp[i][j][k] = true; } else { for (int t = 1; t < k; ++t) { if ((dp[i][j][t] && dp[i + t][j + t][k - t]) || (dp[i][j + k - t][t] && dp[i + t][j][k - t])) { dp[i][j][k] = true; break; } } } } } } return dp[0][0][n]; } };
[LeetCode] 87. Scramble String 爬行字符串
标签:[1] tree solution input pos ogr bcd sel code
原文地址:https://www.cnblogs.com/lightwindy/p/9795770.html