码迷,mamicode.com
首页 > 其他好文 > 详细

[LeetCode] 87. Scramble String 爬行字符串

时间:2018-10-16 10:16:48      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:[1]   tree   solution   input   pos   ogr   bcd   sel   code   

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /      gr    eat
 / \    /  g   r  e   at
           /           a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /      rg    eat
 / \    /  r   g  e   at
           /           a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /      rg    tae
 / \    /  r   g  ta  e
       /       t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

Example 1:

Input: s1 = "great", s2 = "rgeat"
Output: true

Example 2:

Input: s1 = "abcde", s2 = "caebd"
Output: false

一种爬行字符串,就是说假如把一个字符串当做一个二叉树的根,然后它的非空子字符串是它的子节点,然后交换某个子字符串的两个子节点,重新爬行回去形成一个新的字符串,这个新字符串和原来的字符串互为爬行字符串。

解法1: 递归Recursion

解法2: 动态规划Dynamic Programming

Java:

public class Solution {
    public boolean isScramble(String s1, String s2) {
        if (s1.equals(s2)) return true; 
        
        int[] letters = new int[26];
        for (int i=0; i<s1.length(); i++) {
            letters[s1.charAt(i)-‘a‘]++;
            letters[s2.charAt(i)-‘a‘]--;
        }
        for (int i=0; i<26; i++) if (letters[i]!=0) return false;
    
        for (int i=1; i<s1.length(); i++) {
            if (isScramble(s1.substring(0,i), s2.substring(0,i)) 
             && isScramble(s1.substring(i), s2.substring(i))) return true;
            if (isScramble(s1.substring(0,i), s2.substring(s2.length()-i)) 
             && isScramble(s1.substring(i), s2.substring(0,s2.length()-i))) return true;
        }
        return false;
    }
}

Python:

# Time:  O(n^4)
# Space: O(n^3)
class Solution(object):
    # @return a boolean
    def isScramble(self, s1, s2):
        if not s1 or not s2 or len(s1) != len(s2):
            return False
        if s1 == s2:
            return True
        result = [[[False for j in xrange(len(s2))] for i in xrange(len(s1))] for n in xrange(len(s1) + 1)]
        for i in xrange(len(s1)):
            for j in xrange(len(s2)):
                if s1[i] == s2[j]:
                    result[1][i][j] = True

        for n in xrange(2, len(s1) + 1):
            for i in xrange(len(s1) - n + 1):
                for j in xrange(len(s2) - n + 1):
                    for k in xrange(1, n):
                        if result[k][i][j] and result[n - k][i + k][j + k] or                           result[k][i][j + n - k] and result[n - k][i + k][j]:
                            result[n][i][j] = True
                            break

        return result[n][0][0]  

C++: Recursion

class Solution {
public:
    bool isScramble(string s1, string s2) {
        if(s1==s2)
            return true;
            
        int len = s1.length();
        int count[26] = {0};
        for(int i=0; i<len; i++)
        {
            count[s1[i]-‘a‘]++;
            count[s2[i]-‘a‘]--;
        }
        
        for(int i=0; i<26; i++)
        {
            if(count[i]!=0)
                return false;
        }
        
        for(int i=1; i<=len-1; i++)
        {
            if( isScramble(s1.substr(0,i), s2.substr(0,i)) && isScramble(s1.substr(i), s2.substr(i)))
                return true;
            if( isScramble(s1.substr(0,i), s2.substr(len-i)) && isScramble(s1.substr(i), s2.substr(0,len-i)))
                return true;
        }
        return false;
    }
};

C++: Recursion

class Solution {
public:
    bool isScramble(string s1, string s2) {
        if (s1.size() != s2.size()) return false;
        if (s1 == s2) return true;
        string str1 = s1, str2 = s2;
        sort(str1.begin(), str1.end());
        sort(str2.begin(), str2.end());
        if (str1 != str2) return false;
        for (int i = 1; i < s1.size(); ++i) {
            string s11 = s1.substr(0, i);
            string s12 = s1.substr(i);
            string s21 = s2.substr(0, i);
            string s22 = s2.substr(i);
            if (isScramble(s11, s21) && isScramble(s12, s22)) return true;
            s21 = s2.substr(s1.size() - i);
            s22 = s2.substr(0, s1.size() - i);
            if (isScramble(s11, s21) && isScramble(s12, s22)) return true;
        }
        return false;
    }
};  

C++: DP

class Solution {
public:
    bool isScramble(string s1, string s2) {
        if (s1.size() != s2.size()) return false;
        if (s1 == s2) return true;
        int n = s1.size();
        vector<vector<vector<bool> > > dp (n, vector<vector<bool> >(n, vector<bool>(n + 1, false)));
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                dp[i][j][1] = s1[i] == s2[j];
            }
        }
        for (int len = 2; len <= n; ++len) {
            for (int i = 0; i <= n - len; ++i) {
                for (int j = 0; j <= n - len; ++j) {
                    for (int k = 1; k < len; ++k) {
                        if ((dp[i][j][k] && dp[i + k][j + k][len - k]) || (dp[i + k][j][len - k] && dp[i][j + len - k][k])) {
                            dp[i][j][len] = true;
                        }
                    }
                }
            }
        }
        return dp[0][0][n];
    }
};

C++:

class Solution {
public:
    bool isScramble(string s1, string s2) {
        if (s1.size() != s2.size()) return false;
        if (s1 == s2) return true;
        int n = s1.size();
        vector<vector<vector<bool> > > dp (n, vector<vector<bool> >(n, vector<bool>(n + 1, false)));
        for (int i = n - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                for (int k = 1; k <= n - max(i, j); ++k) {
                    if (s1.substr(i, k) == s2.substr(j, k)) {
                        dp[i][j][k] = true;
                    } else {
                        for (int t = 1; t < k; ++t) {
                            if ((dp[i][j][t] && dp[i + t][j + t][k - t]) || (dp[i][j + k - t][t] && dp[i + t][j][k - t])) {
                                dp[i][j][k] = true;
                                break;
                            }
                        }
                    }
                }
            }
        }
        return dp[0][0][n];
    }
};

  

  

  

 

 

[LeetCode] 87. Scramble String 爬行字符串

标签:[1]   tree   solution   input   pos   ogr   bcd   sel   code   

原文地址:https://www.cnblogs.com/lightwindy/p/9795770.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!