标签:pac mat ring blog internet lse multi script another
Combinatorics
Given an array \(a[]\), define an operation:
$
s_i=\sum_{j=1}^{n}{a_j},\
s_i\rightarrow a_i.$
Calculate the value of each \(a\) after \(k\) times of operations.
The official tutorial wrote confusingly, so did other solutions on Internet.
Calculate how element \(a_j\) will affects \(a_i\) \((j \le i)\), after \(k\) times.
Let‘s draw something first.
\((i,j,k)\,\text{means}\, i \cdot a_1 + j \cdot a_2 + k \cdot a_3,\ \text{and}\,K \,\text{is times of operation}:\)
\(\begin{cases} (1,0,0)\, (1,1,0)\, (1,1,1)\quad \text{where K = 1,}\\ (1,0,0)\, (2,1,0)\, (3,2,1)\quad \text{where K = 2,}\\ (1,0,0)\, (3,1,0)\, (6,3,1)\quad \text{where K = 3},\\ \cdots \end{cases}\)
We also have another graph:
$
\begin{align}
1,1\
1,2,1\
1,3,3,1\
1,4,6,4,1\
\cdots
\end{align}
$
**cnblogs cannot start a new line in mathjax...
Think when \(k\) is changing, how the factor before \(a_j\) in \(a_i\) follows, we get:
\[fac_{i,j}^{k} = {j-i+k-1 \choose j-i}\]
To simplify our calculation, we found that \(fac_{i,j}^{k} = fac_{i-j+1,1}^{k}\), for we can replace \(j-i\) with \(j-i+1-1\), they are the same!
So our task now is to calculate \(fac_{i,1}^{k}\), which is \(i + k - 2 \choose i-1\). But we cannot pre process the factorial of \(k\), as \(k\) can be up to \(10^9\). But \(fac_{1,1}\) is always 1!
Think the transfer between \(fac_{i-1,1}\) and \(fac_{i,1}\), that is:
\[\frac{(i-1+k-2)!}{(i-1-1)!(k-1)!} \rightarrow \frac{(i+k-2)!}{(i-1)!(k-1)!}\]
We just need to multiply the first expression by \(i+k-2\) and \((i-1)^{-1}\,(mod\,10^9+7)\). And we can pre process all factors in \(O(n)\) time.
Then finish all calculation in \(O(n^2)\) time, as\(\begin{align}s_i=\sum_{j=1}^{i}{f_{i-j+1}\times a_j}\end{align}\).
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const ll p = 1e+9 + 7;
const int maxn = 2005;
int n, k;
ll inv[maxn], a[maxn], c[maxn], s[maxn];
void init() {
inv[1] = 1;
for (int i = 2; i <= 2000; ++i) {
inv[i] = (-(p/i) + p) * inv[p % i] % p;
}
}
int main() {
init();
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> k;
for (int i = 1; i <= n; ++i) cin >> a[i];
if(!k) {
for(int i = 1; i <= n; ++i) s[i] = a[i];
} else {
c[1] = 1;
for (int i = 2; i <= n; ++i) c[i] = c[i - 1] * (k + i - 2) % p * inv[i - 1] % p;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j) s[i] = (s[i] + c[i - j + 1] * a[j] % p) % p;
}
for (int i = 1; i <= n; ++i) cout << s[i] << " ";
cout << endl;
return 0;
}
标签:pac mat ring blog internet lse multi script another
原文地址:https://www.cnblogs.com/nishikino-curtis/p/9808312.html