码迷,mamicode.com
首页 > 其他好文 > 详细

codeforces_1065_D.three pieces_思维

时间:2018-10-19 00:04:38      阅读:202      评论:0      收藏:0      [点我收藏+]

标签:邻接矩阵   force   color   build   bool   tst   else   通过   can   

题意:一个正方形棋盘,三种棋子,knight:像中国象棋中的马一样走;bishop:斜着走;rook:中国象棋中的车。棋盘中每个格子中标着1--n*n的互不相同的数字,从1开始任选一种棋子开始走,在每个格子,要么移动棋子,要么更换一种棋子,每个格子可以重复走,移动或更换都算作一步。问从1按增序走到n*n,至少需要多少步,相同步数情况下选择替换次数最少的方案。

 

思路:这道题的难点在于每一步可以更换棋子,算上棋子种类,一共3维[i][j][p],每走一步是从[i][j][p]走到[i‘][j‘][p‘],在这种情况下问题有点复杂。但是可以发现任何一点到另一点最多可以3步走到,bishop和rook这两种非常容易算出步数,然后再通过dfs搜索一下knight需要的步数,每走一步验证三种情况,感觉应该可以,改天试试。

另一种思路,官方题解的思路。为了化简问题,将[i][j][k]当做一种状态,用i*n*3+j*3+k映射为一个整数,由此可以构建状态的邻接矩阵,再使用最短路算法求出每个状态之间的最短路,最后按顺序dp一下。这个方法比较巧妙,将3维的状态映射到1维上,值得思考。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
#define N 12
int n;

int getState(int x,int y,int p)
{
    return x*n*3+y*3+p;
}

struct Pair
{
    int mov,rep;
    Pair() {}
    Pair(int m,int r)
    {
        mov=m;
        rep=r;
    }
    bool operator < (const Pair t)const
    {
        if(mov+rep==t.mov+t.rep)
            return rep<t.rep;
        else
            return mov+rep<t.mov+t.rep;
    }
    Pair operator + (const Pair t)const
    {
        Pair ret;
        ret.mov=mov+t.mov;
        ret.rep=rep+t.rep;
        return ret;
    }
    int sum()
    {
        return mov+rep;
    }
};

int dx[8]= {-2,-2,-1,1,2,2,1,-1}; //knight
int dy[8]= {-1,1,2,2,1,-1,-2,-2};

Pair gra[N*N*3][N*N*3];
void buildGra()
{
    for(int i=0; i<n*n*3; i++)
        for(int j=0; j<n*n*3; j++)
            gra[i][j]=Pair(1000,1000);
    for(int i=0; i<n; i++)
    {
        for(int j=0; j<n; j++)
        {
            for(int k=0; k<3; k++)
                for(int l=0; l<3; l++)
                {
                    int t1=getState(i,j,k);
                    int t2=getState(i,j,l);
                    //cout<<"*"<<t1<<" "<<t2<<endl;
                    if(t1==t2)
                        gra[t1][t1]=Pair(0,0);
                    else
                        gra[t1][t2]=gra[t2][t1]=Pair(0,1);
                }
            for(int k=0; k<8; k++) //knight
            {
                int xx=i+dx[k];
                int yy=j+dy[k];
                if(xx>=0&&xx<n&&yy>=0&&yy<n)
                {
                    int t1=getState(i,j,0);
                    int t2=getState(xx,yy,0);
                    gra[t1][t2]=gra[t2][t1]=Pair(1,0);
                }
            }
            for(int k=-1; k<=1; k++) //bishop
                for(int l=-1; l<=1; l++)
                {
                    if(k==0||l==0)
                        continue;
                    int xx=i+k;
                    int yy=j+l;
                    while(xx>=0&&xx<n&&yy>=0&&yy<n)
                    {
                        int t1=getState(i,j,1);
                        int t2=getState(xx,yy,1);
                        gra[t1][t2]=gra[t2][t1]=Pair(1,0);
                        xx+=k;
                        yy+=l;
                    }
                }
            for(int k=i+1; k<n; k++) //rook
            {
                int t1=getState(i,j,2);
                int t2=getState(k,j,2);
                gra[t1][t2]=gra[t2][t1]=Pair(1,0);
            }
            for(int k=j+1; k<n; k++)
            {
                int t1=getState(i,j,2);
                int t2=getState(i,k,2);
                gra[t1][t2]=gra[t2][t1]=Pair(1,0);
            }
        }
    }
}

int main()
{
    int R[105],C[105];
    scanf("%d",&n);
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
        {
            int num;
            scanf("%d",&num);
            R[num]=i;
            C[num]=j;
        }
    buildGra();
    for(int k=0; k<n*n*3; k++)
        for(int i=0; i<n*n*3; i++)
            for(int j=0; j<n*n*3; j++)
                if(gra[i][k]+gra[k][j]<gra[i][j])
                    gra[i][j]=gra[i][k]+gra[k][j];
    Pair dp[N*N][3];
    dp[1][0]=dp[1][1]=dp[1][2]=Pair(0,0);
    for(int i=2; i<=n*n; i++)
    {
        dp[i][0]=dp[i][1]=dp[i][2]=Pair(1000,1000);
        int xx=R[i],yy=C[i];
        for(int j=0; j<3; j++)
        {
            for(int k=0; k<3; k++)
            {
                int snow=getState(xx,yy,j);
                int slst=getState(R[i-1],C[i-1],k);
                if(dp[i-1][k]+gra[slst][snow]<dp[i][j])
                    dp[i][j]=dp[i-1][k]+gra[slst][snow];
            }
        }
    }
    Pair res(1000,1000);
    for(int i=0; i<3; i++)
        if(dp[n*n][i]<res)
            res=dp[n*n][i];
    printf("%d %d\n",res.sum(),res.rep);
    return 0;
}

 

codeforces_1065_D.three pieces_思维

标签:邻接矩阵   force   color   build   bool   tst   else   通过   can   

原文地址:https://www.cnblogs.com/jasonlixuetao/p/9813615.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!