标签:pos 概念 例子 意义 limit www 统计 算法 假设
看了好多书籍和博客,讲先验后验、贝叶斯公式、两大学派、概率模型、或是逻辑回归,讲的一个比一个清楚 ,但是联系起来却理解不能
基本概念如下
拿一个实际的例子,如果用阴天预测是否下雨
在很多文献中,将x与y分别描述为“因”和“果”,P(因)即为先验概率,P(因|果)即已经知道结果求原因的概率为后验概率,这里产生了第一个混淆点,在很多现实的例子里,“因”“果”是什么?因为阴天所以下雨?还是因为要下雨所以阴天?
在上面的例子里,显然只能解释为后者,即这天要下雨是“原因”,阴天是下雨的“结果”,下雨可能引发阴天,也可能引发不阴天。这个理解本身就很别扭。
在英文中,P(y)先验概率、P(y|x)后验概率、P(x|y)似然函数、P(x)分别的名称为:prior、posterior、likelihood、evidence,最后的P(x)连中文名称都没有,但我个人认为这个才是理解这些概念的关键。
先说说概率论两大学派,频率学派和贝叶斯学派,频率学派认为事件出现的概率是一定的,贝叶斯学派认为事件的概率也是存在分布的
这里是怎么跟上面的先验概率、后验概率、似然函数联系起来的呢,注意频率学派和贝叶斯学派都是参数估计的方法,所以要估计的不是正面或者反面向上,而是模型的参数,P(抛硬币正面向上)其实只是模型参数的一个表现。如果用“因果论”来解释,模型参数即为因,抛硬币结果为正面向上即为果。这里为了避免混淆,许多文献令模型参数为θ,区别于之前使用的y。
基于这样的定义,推导两个学派的估计方法
目前还比较顺利,但回到刚才阴天下雨的问题,在机器学习任务中,我们一般是希望通过阴天来判断是否会下雨,那么模型对应的(表现)就是P(rain|cloudy),这里用“因”到底应该对应模型参数?还是下雨?
接下来再看一个机器学习的典型模型——逻辑回归,在《统计学习方法》等文献中,逻辑回归模型如下(x为输入特征向量、θ为参数向量、y为预测结果) \[P(y = 1|x) = \frac{1}{{1 + {e^{ - \theta x}}}}\] \[P(y = 0|x) = 1 - P(y = 1) = \frac{1}{{1 + {e^{\theta x}}}}\] P(y=1|x)与P(y=0|x)是该模型对于后验概率的估计,可以化简为 \[P(y|x) = {(\frac{1}{{1 + {e^{ - \theta x}}}})^y}{(1 - \frac{1}{{1 + {e^{ - \theta x}}}})^{1 - y}}\] 然后是用最大似然估计推导逻辑回归参数估计的过程 \[\mathop {\max }\limits_\theta \prod\limits_i {{{(\frac{1}{{1 + {e^{ - \theta {x_i}}}}})}^{{y_i}}}{{(1 - \frac{1}{{1 + {e^{ - \theta {x_i}}}}})}^{1 - {y_i}}}} \]
这推导表面上顺利的不得了,大家都这么写,仔细想想不对啊!似然函数是P(a|b)的话,后验分布应该是P(b|a),两个怎么成了一回事?x、y、θ挤到一块,哪个是哪个?
所以个人认为用“因”“果”描述先验后验,不太合适。英文将P(x)描述为evidence,evidence有显性的意思在里面,如果用“显示的”“隐藏的”来描述,看是不是能顺畅点。
在阴天下雨模型中,我们知道今天是阴天,要推断的是是否要下雨,阴天是“显示的”,下雨是“隐藏的”,那么先验概率自然是P(下雨),后验概率则为P(下雨|阴天)。
在硬币模型中,我们知道10次抛硬币结果是正面,要推断的是抛硬币结果模型,抛硬币结果是“显”,模型是“隐”,那么先验分布为P(模型),后验分布为P(模型|10次抛硬币结果是正面)。
在逻辑回归模型中,模型的功能是根据输入x预测输出y,自然x是已知的,是“显”,y是要预测的,是“隐”,所以模型将决策函数假设为后验概率P(y|x)。但是在参数估计的过程中,输入的是训练数据,训练数据的x、y都是已知的,而模型参数θ才是未知的,所以x、y是“显”,θ是“隐”,所以此时的似然函数不是P(x|y),也不是P(θ|x),而是P(θ|x,y),这样,最大似然估计的式子就可以推导出来了!
回头看逻辑回归的模型,其实假设的也不是P(y|x),而是P(y|x,θ)。
所以其实预测和参数估计是两个过程,一个是概率过程,根据模型求概率(数据),一个是统计过程,根据数据(展现出来的概率)求模型,两个过程正好相反,这里是第二个混淆点。
举另一个实例,如果需要根据一个人是否咳嗽判断他是否有肺炎,那么“是否咳嗽”就是“显”,“是否有肺炎”就是“隐”;如果需要根据一个人是否有肺炎判断他平时是否咳嗽,那么“是否有肺炎”就是“显”,“是否咳嗽”就是“隐”,这哪有什么绝对的因果关系嘛。
菜鸡见解,还请大神多多斧正!
参考文献:
https://blog.csdn.net/u011508640/article/details/72815981
https://www.cnblogs.com/ldphoebe/p/5041813.html
https://blog.csdn.net/zjuPeco/article/details/77165974
https://www.zhihu.com/question/24261751
https://www.zhihu.com/question/27398304
先验概率、后验概率、似然函数与机器学习中概率模型(如逻辑回归)的关系理解
标签:pos 概念 例子 意义 limit www 统计 算法 假设
原文地址:https://www.cnblogs.com/jhc888007/p/9815720.html