码迷,mamicode.com
首页 > 其他好文 > 详细

项目一

时间:2018-10-21 21:56:44      阅读:288      评论:0      收藏:0      [点我收藏+]

标签:min   vba   style   and   店铺   val   drop   price   top   

 

 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings(ignore)

from bokeh.plotting import figure, show, output_file
from bokeh.models import ColumnDataSource

 

‘‘‘
(1)加载数据
‘‘‘
import os
os.chdir(rC:\Users\Administrator\Desktop\python数据分析\课程资料\【非常重要】python数据分析_项目资料\项目07城市餐饮店铺选址分析)
df1 = pd.read_excel(上海餐饮数据.xlsx, sheetname=0, header=0)

‘‘‘
(2)计算口味、客单价、性价比指标
‘‘‘
data1 = df1[[类别,口味,环境,服务,人均消费]]
data1.dropna(inplace=True)
data1 = data1[(data1[口味] > 0) & (data1[人均消费] > 0)]
data1[性价比] = (data1[口味] + data1[环境] + data1[服务]) / data1[人均消费]
              
#数据清洗 + 性价比计算

def f1():
    fig,axes = plt.subplots(1,3,figsize = (10,4))
    data1.boxplot(column = [口味], ax = axes[0])
    data1.boxplot(column = [人均消费], ax = axes[1])
    data1.boxplot(column = [性价比], ax = axes[2])      
#创建函数f1,制作箱型图,查看异常值;
              
def f2(data, col):
    q1 = data[col].quantile(q = 0.25)
    q3 = data[col].quantile(q = 0.75)
    iqr = q3-q1
    t1 = q1 - 3*iqr
    t2 = q3 + 3*iqr
    return data[(data[col] > t1) & (data[col] < t2)][[类别, col]] #要筛选出一个单独的数据
#创建函数f2,清除异常值;

data_kw = f2(data1, 口味)
data_rj = f2(data1,人均消费)
data_xjb = f2(data1,性价比)
def f3(data, col):
    col_name = col + _norm
    data_gp = data.groupby(类别).mean()
    data_gp[col_name] = (data_gp[col] - data_gp[col].min()) / (data_gp[col].max()-data_gp[col].min())
    data_gp.sort_values(by = col_name, inplace = True, ascending = False)
    return data_gp
#创建函数f3,标准化指标并排序

data_kw_score = f3(data_kw, 口味)
data_rj_score = f3(data_rj, 人均消费)
data_xjb_score = f3(data_xjb, 性价比)
#指标标准化得分

data_final_q1 = pd.merge(data_kw_score, data_rj_score, left_index = True, right_index = True)
data_final_q1 = pd.merge(data_final_q1, data_xjb_score, left_index = True,right_index = True)
#数据合并


‘‘‘
绘制图表,辅助分析
‘‘‘
from bokeh.layouts import gridplot

output_file(project07_h1.html)

data_final_q1[size] = data_final_q1[口味_norm] * 40
data_final_q1.index.name = type
data_final_q1.columns = [kw, kw_norm,price, price_norm, xjb, xjb_norm, size]
#将列名改为英文

source = ColumnDataSource(data_final_q1)
#创建数据


result = figure(plot_width = 800, plot_height = 300, title = 餐饮类型得分,
                x_axis_label = 人均消费, y_axis_label = 性价比得分)
result.circle(x = price, y = xjb_norm, source = source,
              line_color = black, line_dash = [6,4], fill_alpha = 0.6, size = size)
#散点图

data_type = data_final_q1.index.tolist()
kw = figure(plot_width = 800, plot_height = 300, title= 口味得分,
            x_range = data_type)
kw.vbar(x = type, top = kw_norm, source = source,
        width = 0.8, alpha = 0.7, color = red)
#柱状图1

price = figure(plot_width = 800, plot_height = 300, title= 人均消费得分,
            x_range = data_type)
price.vbar(x = type, top = price_norm, source = source,
        width = 0.8, alpha = 0.7, color = green)
#柱状图2

p = gridplot([[result], [kw], [price]]) #把3个并排放一块
show(p)

print(finish)

 

项目一

标签:min   vba   style   and   店铺   val   drop   price   top   

原文地址:https://www.cnblogs.com/shengyang17/p/9825934.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!