码迷,mamicode.com
首页 > 其他好文 > 详细

POI2015 解题报告

时间:2018-10-23 21:16:21      阅读:181      评论:0      收藏:0      [点我收藏+]

标签:模拟   依次   gis   one   col   register   树状数组   选中   sum   

未完, 待更新...

 

Luogu3585 [POI2015]PIE

Solution

模拟, 按顺序搜索, 把搜索到的需要印却没有印的点 和 印章的第一个点重合, 并印上。

另外, 纸上需要印的点 和 印章上沾墨水的点用数组储存, 能加快很多

Code

技术分享图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<vector>
 5 #define R register
 6 using namespace std;
 7 typedef pair<int, int> P;
 8 
 9 const int N = 1e3 + 5;
10 
11 int n, m, a, b;
12 int stx, sty;
13 char s[N], in[N][N], mp[N][N];
14 
15 vector<P> need, offer;
16 
17 int jud(int x, int y) {
18     if (x <= 0 || y <= 0 || x > n || y > m)
19         return 0;
20     return 1;
21 }
22 
23 #define X first
24 #define Y second
25 int col(int x, int y) {
26     for (R int i = 0, up = offer.size(); i < up; ++i) {
27         int onx = x + offer[i].X - stx, ony = y + offer[i].Y - sty;
28         if (!jud(onx, ony)) return 0;
29         if (mp[onx][ony] == .) return 0;
30         mp[onx][ony] = .;
31     }
32     return 1;
33 }
34 
35 int work() {
36     stx = sty = 0;
37     offer.clear(); need.clear();
38     for (R int i = 1; i <= n; ++i) scanf("%s", mp[i] + 1);
39     for (R int i = 1; i <= a; ++i) scanf("%s", in[i] + 1);
40     for (R int i = 1; i <= n; ++i)
41         for (R int j = 1; j <= m; ++j) if (mp[i][j] == x)
42             need.push_back(P(i, j));
43     for (R int i = 1; i <= a; ++i)
44         for (R int j = 1; j <= b; ++j) if (in[i][j] == x) {
45             offer.push_back(P(i, j));
46             if (!stx) stx = i, sty = j;
47         }
48     
49     for (int i = 0, up = need.size(); i < up; ++i)
50         if (mp[need[i].X][need[i].Y] == x)
51             if (!col(need[i].X, need[i].Y)) return 0;
52     return 1;
53 }
54 #undef X
55 #undef Y
56 
57 int main()
58 {
59     int Q; scanf("%d", &Q);
60     for (; Q; Q--) {
61         scanf("%d%d%d%d", &n, &m, &a, &b);
62         if (work()) puts("TAK");
63         else puts("NIE");
64     }
65 }
Luogu3585 PIE

 

Luogu3594[POI2015]WIL-Wilcze do?y

Solution

单调队列, 将长度为 $d$ 的最大字段和加入队列, 并且队列内 字段和 单调递减

开个双指针 $i, j$ 表示要选择的最长的连续区间的两端。

随着 $i$ 增加,把新的 长度为$d$ 的子段和加入队列。

然后逐渐右移指针$j$, 直到找到第一个$<=p$的区间。 随着$j$增加, 把 队列内超出范围的子段和 弹出

Code

技术分享图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define rd read()
 5 #define ll long long
 6 #define R register
 7 using namespace std;
 8 
 9 const int N = 2e6 + 5;
10 
11 int n, p, d;
12 ll sum[N], a[N];
13 ll q[N];
14 
15 ll read() {
16     ll X = 0, p = 1; char c = getchar();
17     for (; c > 9 || c < 0; c = getchar())
18         if (c == -) p = -1;
19     for (; c >= 0 && c <= 9; c = getchar())
20         X = X * 10 + c - 0;
21     return X * p;
22 }
23 
24 int main()
25 {
26     n = rd; p = rd; d = rd;
27     for (R int i = 1; i <= n; ++i)
28         a[i] = rd, sum[i] = sum[i - 1] + a[i];
29     int l = 1, r = 0, ans = d;
30     for (int i = d, j = 0; i <= n; ++i) {
31         ll tmp = sum[i] - sum[i - d];
32         while (l <= r && sum[q[r]] - sum[q[r] - d] <= tmp) r--;
33         q[++r] = i;
34         tmp = sum[q[l]] - sum[q[l] - d];
35         while (sum[i] - sum[j] - tmp > p) {
36             j++;
37             while (l <= r && q[l] - d < j) l++;
38             tmp = sum[q[l]] - sum[q[l] - d];
39         }
40         ans = max(ans, i - j);
41     }
42     printf("%d\n", ans);
43 }
Luogu3594 WIL-Wilcze do?y

 

Luogu3586[POI2015]LOG

Solution

树状数组

先考虑怎样判断是否符合条件, 数列中 $>=s$的个数为$cnt$, 若剩余的$<s$的数的和 $>= (c-cnt)*s$ 即可满足条件

这样我们就需要知道数列中有多少个数$>=s$, 以及$<s$的数的和, 可以用两个树状数组维护.

最后一个点 开LL

Code

技术分享图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define rd read()
 5 #define ll long long
 6 using namespace std;
 7 
 8 const int N = 2e6 + 5;
 9 
10 ll a[N], n, m, tot;
11 ll cnt[N], ls[N], sum[N];
12 
13 struct node {
14     int typ, x;
15     ll y;
16 }pro[N];
17 
18 ll read() {
19     ll X = 0, p = 1; char c = getchar();
20     for (; c > 9 || c < 0; c = getchar())
21         if (c == -) p = -1;
22     for (; c >= 0 && c <= 9; c = getchar())
23         X = X * 10 + c - 0;
24     return X * p;
25 }
26 
27 int lowbit(int x) {
28     return x & -x;
29 }
30 
31 template <typename T>
32 void add(int x, ll d, T *s) {
33     for (; x <= tot; x += lowbit(x))
34         s[x] += d;
35 }
36 
37 template <typename T>
38 T query(int x, T *s) {
39     T re = 0;
40     for (; x; x -= lowbit(x))
41         re += s[x];
42     return re;
43 }
44 
45 int fd(ll x) {
46     return lower_bound(ls + 1, ls + 1 + tot, x) - ls;
47 }
48 
49 int main()
50 {
51     n = rd; m = rd;
52     tot = 1;
53     for (int i = 1; i <= m; ++i) {
54         char ch = getchar();
55         while (ch > Z || ch < A) ch = getchar();
56         if (ch == U) {
57             pro[i].typ = 1; pro[i].x = rd; pro[i].y = rd;
58             ls[++tot] = pro[i].y;
59         }
60         else {
61             pro[i].typ = 2; pro[i].x = rd; pro[i].y = rd;
62         }
63     }
64     sort(ls + 1, ls + 1 + tot);
65     tot = unique(ls + 1, ls + 1 + tot) - ls - 1;
66     for (int i = 1; i <= n; ++i)
67         add(1, 1, cnt);
68     for (int i = 1; i <= m; ++i) {
69         if (pro[i].typ == 1) {
70             int ch = fd(a[pro[i].x]);
71             add(ch, -1, cnt);
72             add(ch, -ls[ch], sum);
73             ch = fd(pro[i].y);
74             add(ch, 1, cnt);
75             add(ch, ls[ch], sum);
76             a[pro[i].x] = pro[i].y;
77         }
78         else {
79             int ch = fd(pro[i].y), num;
80             num = n - query(ch - 1, cnt);
81             ll tmp = (pro[i].x - num) * pro[i].y;
82             if (query(ch - 1, sum) >= tmp)
83                 puts("TAK");
84             else puts("NIE");
85         }
86     }
87 }
Luogu3586 LOG

 

Luogu3584[POI2015]LAS

Solution

环形DP

$S$ 表示第$i$个人 以及和他相邻的两个人吃哪边的食物, 例如$S$的二进制上有4, 就表示第$i-1$个人 吃右边的食物, 反之, 则吃左边的食物

设置状态$f[i][S]$ 表示第$i$ 个人, 他相邻的吃食物的情况 为$S$, 能否符合要求。 

由于环形最后一个人会影响第一个人, 则先枚举 第一个人, 到最后一个人判断是否存在与第一个人状态相符的情况 符合要求。

Code

技术分享图片
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #define rd read()
 5 #define db double
 6 using namespace std;
 7 
 8 const int N = 1e6 + 5;
 9 
10 int n, c[N], f[N][8], ans[N], path[N][8];
11 
12 int read() {
13     int X = 0, p = 1; char c = getchar();
14     for (; c > 9 || c < 0; c = getchar())
15         if (c == -) p = -1;
16     for (; c >= 0 && c <= 9; c = getchar())
17         X = X * 10 + c - 0;
18     return X * p;
19 }
20 
21 int ch(int x) {
22     return (x + n) % n;
23 }
24 
25 int jud(int x, int S) {
26     int le, re, me;
27     le = (S >> 2) & 1; re = S & 1; me = (S >> 1) & 1;
28     db now = c[ch(x + me)], nxt;
29     if (!me && le) now /= 2;
30     if (me && !re) now /= 2;
31     nxt = c[ch(x + (!me))];
32     if (me && le) nxt /= 2;
33     if (!me && !re) nxt /= 2;
34     if (nxt > now) return 0;
35     else return 1;
36 }
37 
38 
39 int work(int S) {
40     memset(f, 0, sizeof (f));
41     f[0][S] = 1;
42     for (int i = 1; i < n; ++i) 
43         for (int now = 0; now < 8; ++now) if (jud(i, now)) 
44             for (int pre = 0; pre <= 4; pre += 4) if (f[i - 1][pre + (now >> 1)])
45                 f[i][now] = 1, path[i][now] = pre + (now >> 1);
46     if (!f[n - 1][S >> 1] && !f[n - 1][(S >> 1) + 4])
47         return 0;
48     if (f[n - 1][S >> 1]) {
49         for (int now = S >> 1, i = n - 1; ~i; now = path[i][now], --i)
50             ans[i] = (now & 2) >> 1;
51         for (int i = 0; i < n; ++i)
52             printf("%d ", (ans[i] + i) % n + 1);
53     }
54     else {
55         for (int now = (S >> 1) + 4, i = n - 1; ~i; now = path[i][now], --i)
56             ans[i] = (now & 2) >> 1;
57         for (int i = 0; i < n; ++i)
58             printf("%d ", (ans[i] + i) % n + 1);
59     }
60     return 1;
61 }
62 
63 int main()
64 {
65     n = rd;
66     for (int i = 0; i < n; ++i)
67         c[i] = rd;
68     for (int i = 0; i < 8; ++i) if(jud(0, i))
69         if (work(i)) return 0;
70     puts("NIE");
71 }
Luogu3584 LAS

 

Luogu3588[POI2015]PUS

Solution

线段树优化建树+差分约束

我们最初的想法应该是 在区间$[L,R]$内 选中的数向 未被选中的数连一条长度为$1$的边, 一次操作便有$N^2$条边, 这样肯定会MLE+TLE

于是我们又想到另外建一个虚点, 被选中的数向虚点建一条长度为$1$ 的边, 虚点再向未被选中的数 连长度为0的边, 这样一次操作便有$N$条边, 仍会MLE+TLE

于是我们用线段树优化建图, 所有操作中 区间约有$k+1$段, 所以虚点向区间连边, 被选中的点再向虚点连边。 就解决了这个问题。

最后再差分约束一下。

Code

技术分享图片
  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 #include<queue>
  5 #define rd read()
  6 using namespace std;
  7 
  8 const int N = 4e5 + 5;
  9 
 10 int head[N], tot;
 11 int n, dis[N], m, p, vis[N], r[N];
 12 int pre[N];
 13 
 14 struct edge {
 15     int nxt, to, w;
 16 }e[N << 2];
 17 
 18 queue<int> q;
 19 
 20 int read() {
 21     int X = 0, p = 1; char c = getchar();
 22     for (; c > 9 || c < 0; c = getchar())
 23         if (c == -) p = -1;
 24     for (; c >= 0 && c <= 9; c = getchar())
 25         X = X * 10 + c - 0;
 26     return X * p;
 27 }
 28 
 29 void add(int u, int v, int w) {
 30     e[++tot].to = v;
 31     e[tot].nxt = head[u];
 32     e[tot].w = w;
 33     r[v]++;
 34     head[u] = tot;
 35 }
 36 
 37 namespace SegT {
 38     int lc[N], rc[N], cnt, root;
 39 #define mid ((l + r) >> 1)
 40     
 41     void build(int &x, int l, int r) {
 42         if (l == r) {
 43             x = l; return;
 44         }
 45         x = ++cnt;
 46         build(lc[x], l, mid);
 47         build(rc[x], mid + 1, r);
 48         add(lc[x], x, 0);
 49         add(rc[x], x, 0);
 50     }
 51 
 52     void update(int L, int R, int c, int l, int r, int x) {
 53         if (L > R) return;
 54         if (L <= l && r <= R) {
 55             add(x, c, 0); return;
 56         }
 57         if (mid >= L)
 58             update(L, R, c, l, mid, lc[x]);
 59         if (mid < R)
 60             update(L, R, c, mid + 1, r, rc[x]);
 61     }
 62 }using namespace SegT;
 63 
 64 void cmax(int &A, int B) {
 65     if (A < B)
 66         A = B;
 67 }
 68 
 69 void Topsort() {
 70     for (int i = 1; i <= cnt; ++i) {
 71         if (!dis[i]) dis[i] = 1;
 72         if (!r[i]) q.push(i);
 73     }
 74     for (int u; !q.empty();) {
 75         u = q.front(); q.pop();
 76         vis[u] = 1;
 77         for (int i = head[u]; i; i = e[i].nxt) {
 78             int nt = e[i].to;
 79             cmax(dis[nt], dis[u] + e[i].w);
 80             if (!(--r[nt])) q.push(nt);
 81         }
 82     }
 83 }
 84 
 85 int main()
 86 {
 87     cnt = n = rd; p = rd; m = rd;
 88     for (int i = 1; i <= p; ++i) {
 89         int pos = rd, x = rd;
 90         pre[pos] = dis[pos] = x;
 91     }
 92     build(root, 1, n);
 93     for (; m; m--) {
 94         int l = rd, r = rd, num = rd;
 95         int last = l, now;
 96         ++cnt;
 97         for (; num; --num) {
 98             add(cnt, now = rd, 1);
 99             update(last, now - 1, cnt, 1, n, root);
100             last = now + 1;
101         }
102         update(now + 1, r, cnt, 1, n, root);
103     }
104     Topsort();
105     for (int i = 1; i <= n; ++i) 
106         if (!vis[i] || dis[i] > 1e9 || (dis[i] > pre[i] && pre[i]))
107             return puts("NIE"), 0;
108     puts("TAK");
109     for (int i = 1; i <= n; ++i)
110         printf("%d ", dis[i]);
111 }
Luogu3588 PUS

 

Luogu3596[POI2015]MOD

Solution

树形DP

确实有难度啊QAQ

要求出每个子树的直径, 以及删去子树后剩下的那棵树的直径。

要使合并后的树直径最小, 需要把两棵树的直径的中点连起来, 设两个直径分别为 $f, g$最后得到的直径为 \max{f, g, (f+1)/2+(g+1)/2+1}$

要使合并后的树直径最大, 则把直径两端给连起来, 为$f+g+1$

状态转移不好讲, 就讲变量的意义, 具体看代码里的两个$dp$

$f[i]$ 表示 以$i$为根的子树的直径

$w[i][0]$ 表示以 $i$的子节点 为根的子树的直径中  最大的直径

$w[i][1]$ 表示以 $i$的子节点 为根的子树的直径中 第二大的直径

$d[i][0]$ 表示从 $i$ 出发 往下 的最长链的长度

$d[i][1]$  和 $d[i][2]$ 依次类推

$line[i]$ 表示 从$i$开始, 到 除$i$外的子节点 所能得到的最长链

$g[i]$ 表示删去 以$i$ 为节点的子树后 得到的树 的直径

 

最后要得到方案 :

直径最长则 $bfs$ 求出两条直径的端点

直径最短, 则先求出两条直径的端点, 然后往上跳, 找到直径的中点

总复杂度$O(N)$

Code

技术分享图片
  1 #include<cstdio>
  2 #include<cstring>
  3 #include<algorithm>
  4 #include<queue>
  5 #define rd read()
  6 const int N = 5e5 + 5;
  7 using namespace std;
  8 
  9 int f[N], g[N], d[N][3], w[N][2], line[N], n, fa[N];
 10 int head[N], tot;
 11 int ansmax, ansmin = N, maxx, maxy, minx, miny;
 12 int diax1, diay1, diax2, diay2;
 13 int dep[N], vis[N];
 14 
 15 queue<int> q;
 16 
 17 struct edge {
 18     int nxt, to;
 19 }e[N << 1];
 20 
 21 int read() {
 22     int X = 0, p = 1; char c = getchar();
 23     for (; c > 9 || c < 0; c = getchar())
 24         if (c == -) p = -1;
 25     for (; c >= 0 && c <= 9; c = getchar())
 26         X = X * 10 + c - 0;
 27     return X * p;
 28 }
 29 
 30 void add(int u, int v) {
 31     e[++tot].to = v;
 32     e[tot].nxt = head[u];
 33     head[u] = tot;
 34 }
 35 
 36 void cmax(int &A, int B) {
 37     if (A < B)
 38         A = B;
 39 }
 40 
 41 void cmin(int &A, int B) {
 42     if (A > B)
 43         A = B;
 44 }
 45 
 46 void dp1(int u) {
 47     for (int i = head[u]; i; i = e[i].nxt) {
 48         int nt = e[i].to;
 49         if (nt == fa[u]) continue;
 50         dep[nt] = dep[u] + 1;
 51         fa[nt] = u;
 52         dp1(nt);
 53         cmax(f[u], f[nt]);
 54         int tmp = d[nt][0] + 1;
 55         if (tmp > d[u][0])
 56             d[u][2] = d[u][1], d[u][1] = d[u][0], d[u][0] = tmp;
 57         else if (tmp > d[u][1])
 58             d[u][2] = d[u][1], d[u][1] = tmp;
 59         else if (tmp > d[u][2])
 60             d[u][2] = tmp;
 61         tmp = f[nt];
 62         if (tmp > w[u][0])
 63             w[u][1] = w[u][0], w[u][0] = tmp;
 64         else if (tmp > w[u][1])
 65             w[u][1] = tmp;
 66     }
 67     cmax(f[u], d[u][0] + d[u][1]);
 68 }
 69 
 70 void dp2(int u) {
 71     if (u != 1) {
 72         if (ansmax < g[u] + f[u] + 1) {
 73             ansmax = g[u] + f[u] + 1;
 74             maxx = fa[u]; maxy = u;
 75         }
 76         int res = max(g[u], f[u]);
 77         cmax(res, (g[u] + 1) / 2 + (f[u] + 1) / 2 + 1);
 78         if (ansmin > res) {
 79             ansmin = res;
 80             minx = fa[u]; miny = u;
 81         }
 82     }
 83     for (int i = head[u]; i; i = e[i].nxt) {
 84         int nt = e[i].to;
 85         if (nt == fa[u]) continue;
 86         cmax(line[nt], line[u] + 1);
 87         cmax(g[nt], g[u]);
 88         int tmp = d[nt][0] + 1;
 89         if (tmp == d[u][0]) {
 90             cmax(g[nt], d[u][1] + d[u][2]);
 91             cmax(g[nt], line[u] + d[u][1]);
 92             cmax(line[nt], d[u][1] + 1);
 93         }
 94         else if (tmp == d[u][1]) {
 95             cmax(g[nt], d[u][0] + d[u][2]);
 96             cmax(g[nt], line[u] + d[u][0]);
 97             cmax(line[nt], d[u][0] + 1);
 98         }
 99         else {
100             cmax(g[nt], d[u][0] + d[u][1]);
101             cmax(g[nt], line[u] + d[u][0]);
102             cmax(line[nt], d[u][0] + 1);
103         }
104         tmp = f[nt];
105         if (tmp == w[u][0]) 
106             cmax(g[nt], w[u][1]);
107         else cmax(g[nt], w[u][0]);
108         dp2(nt);
109     }
110 }
111 
112 void outputmax() {
113     memset(vis, 0, sizeof(vis));
114     printf("%d %d %d", ansmax, maxx, maxy);
115     q.push(maxx);
116     vis[maxx] = 1;
117     for (int u; !q.empty();) {
118         u = q.front(); q.pop();
119         maxx = u;
120         for (int i = head[u]; i; i = e[i].nxt) {
121             int nt = e[i].to;
122             if (nt == maxx || nt == maxy) continue;
123             if (vis[nt]) continue;
124             q.push(nt);
125             vis[nt] = 1;
126         }
127     }
128     q.push(maxy);
129     vis[maxy] = 1;
130     for (int u; !q.empty();) {
131         u = q.front(); q.pop();
132         maxy = u;
133         for (int i = head[u]; i; i = e[i].nxt) {
134             int nt = e[i].to;
135             if (vis[nt]) continue;
136             q.push(nt);
137             vis[nt] = 1;
138         }
139     }
140     printf(" %d %d\n", maxx, maxy);
141 }
142 
143 int bfs(int S) {
144     memset(vis, 0, sizeof(vis));
145     q.push(S);
146     vis[S] = 1;
147     int re;
148     for (int u; !q.empty();) {
149         u = q.front(); q.pop();
150         re = u;
151         for (int i = head[u]; i; i = e[i].nxt) {
152             int nt = e[i].to;
153             if ((u == minx && nt == miny) || (u == miny && nt == minx))
154                 continue;
155             if (vis[nt]) continue;
156             q.push(nt);
157             vis[nt] = 1;
158         }
159     }
160     return re;
161 }
162 
163 int solve(int x, int y, int len) {
164     int rest = len;
165     if (dep[x] < dep[y]) swap(x, y);
166     while (rest != (len + 1) / 2)
167         x = fa[x], rest --;
168     return x;
169 }
170 
171 int main()
172 {
173     n = rd; 
174     for (int i = 1; i < n; ++i) {
175         int u = rd, v = rd;
176         add(u, v); add(v, u);
177     }
178     dp1(1); dp2(1);
179     printf("%d %d %d", ansmin, minx, miny);
180     diax1 = bfs(minx); diay1 = bfs(diax1);
181     diax2 = bfs(miny); diay2 = bfs(diax2);
182     printf(" %d %d\n", solve(diax1, diay1, g[miny]), solve(diax2, diay2, f[miny]));
183     outputmax();
184 }
Luogu3596 MOD

 

POI2015 解题报告

标签:模拟   依次   gis   one   col   register   树状数组   选中   sum   

原文地址:https://www.cnblogs.com/cychester/p/9820393.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!