标签:改进 bic 函数 功能 amp you 基于 假设 ase
We can improve our features and the form of our hypothesis function in a couple different ways.
我们可以通过几种不同的方式改进我们的特征和假设函数的形式。
We can combine multiple features into one. For example, we can combine x1? and x2? into a new feature x3? by taking x1??x2?.
我们可以将多个功能合二为一。 例如,我们可以通过取x1?x2?将x1和x2?组合成新的特征x3。
Our hypothesis function need not be linear (a straight line) if that does not fit the data well.
如果不能很好地拟合数据,我们的假设函数不必是线性的(直线)。
We can change the behavior or curve of our hypothesis function by making it a quadratic, cubic or square root function (or any other form).
我们可以通过使其成为二次,三次或平方根函数(或任何其他形式)来改变我们的假设函数的行为或曲线。
For example, if our hypothesis function is \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1}\]? then we can create additional features based on x1?, to get the quadratic function \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}x_1^2\] or the cubic function \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}x_1^2 + {\theta _3}x_1^3\]
例如,如果我们的假设函数是\[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1}\]?那么我们可以基于x1创建其他功能 ,得到二次函数\[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}x_1^2\]或三次函数 \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}{x_1} + {\theta _2}x_1^2 + {\theta _3}x_1^3\]