码迷,mamicode.com
首页 > 其他好文 > 详细

[CQOI2011]放棋子

时间:2018-10-24 22:23:17      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:复杂度   分享   com   size   style   不用   www   src   line   

技术分享图片

想到了50%吧算是。

f[i][j][k]表示,前i种,占了j行k列。方案数。

发现,转移要处理:“用c个棋子,占据n行m列”的方案数。

设g[i][j][k]表示,i行j列用k个棋子占的方案数。直接处理复杂度爆炸。

然后我就mengbier了。

考虑大力容斥:

也即,总方案数-不合法方案数(不能覆盖完全)

g[i][j][k]=C(i*j,k)-∑l∑r:g[l][r][k]*C(i,l)*C(j,r) (i*j>=k&&l<=i&&j<=r)

显然由于l,r不同,不会减多。

发现不用统计所有的 k,只用统计那c个即可。

然后f[i][j][k]的转移就顺理成章了。

复杂度:O(n^2m^2c)

 

总结:

没有想到容斥那一步。。。

正难则反。

最关键的是,不用k之间的递推,所以,第三维看似是k,其实是c(10而已)

 

[CQOI2011]放棋子

标签:复杂度   分享   com   size   style   不用   www   src   line   

原文地址:https://www.cnblogs.com/Miracevin/p/9845966.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!