标签:csdn 自己 www 最大的 图片 cal slam lam .com
在SLAM中,机器学习中等关于梯度下降的应用还是蛮多的,但是关于“反向梯度方向是函数值局部下降最快的方向”等概念的解释,不是特别清晰,下面附上自己的一些理解。
名词解析:
梯度:
梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着梯度的方向变化最快。
设在平面区域D上具有一阶连续偏导数,为一个单位向量,如果下列的极限值存在
此方向导数记为
则称这个极限值是沿着方向的方向导数,那么随着的不同,我们可以求出任意方向的方向导数.
简化计算如下:
设,
那么我们可以得到:
(为向量与向量之间的夹角)
那么此时如果要取得最大值,也就是当为0度的时候,也就是向量(这个方向是一直在变,在寻找一个函数变化最快的方向)与向量(这个方向当点固定下来的时候,它就是固定的)平行的时候,方向导数最大.方向导数最大,也就是单位步伐,函数值朝这个反向变化最快.
函数值下降最快的方向就是和向量相同的方向.那么此时我把A向量命名为梯度(当一个点确定后,梯度方向是确定的),也就是说明了为什么梯度方向是函数变化率最大的方向了!!!
那么沿着反向梯度方向前进就可以找到最快的下降方式了。
标签:csdn 自己 www 最大的 图片 cal slam lam .com
原文地址:https://www.cnblogs.com/wongyi/p/9882131.html