码迷,mamicode.com
首页 > 其他好文 > 详细

Luogu P4168 [Violet]蒲公英

时间:2018-10-31 17:52:24      阅读:205      评论:0      收藏:0      [点我收藏+]

标签:离散   swa   uniq   wap   正整数   区间   正是   lower   复杂度   

P4168 [Violet]蒲公英

题意

题目背景

亲爱的哥哥:

你在那个城市里面过得好吗?

我在家里面最近很开心呢。昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了。我觉得把那么可怕的怪物召唤出来的那个坏蛋也很坏呢。不过奶奶说他是很难受的时候才做出这样的事的……

最近村子里长出了一大片一大片的蒲公英。一刮风,这些蒲公英就能飘到好远的地方了呢。我觉得要是它们能飘到那个城市里面,让哥哥看看就好了呢!

哥哥你要快点回来哦!

爱你的妹妹 \(Violet\)

\(Azure\) 读完这封信之后微笑了一下。

“蒲公英吗……”

题目描述

在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关。

为了简化起见,我们把所有的蒲公英看成一个长度为\(n\)的序列\((a_1,a_2\cdots a_n)\),其中\(a_i\)为一个正整数,表示第\(i\)棵蒲公英的种类编号。

而每次询问一个区间\([l,r]\),你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个。

注意,你的算法必须是在线的

输入输出格式

输入格式:

第一行两个整数\(n,m\),表示有\(n\)株蒲公英,\(m\)次询问。

接下来一行\(n\)个空格分隔的整数\(a_i\),表示蒲公英的种类

再接下来\(m\)行每行两个整数\(l_0,r_0\),我们令上次询问的结果为\(x\)(如果这是第一次询问,则\(x=0\))。

\(l=(l_0+x-1)\bmod n + 1,r=(r_0+x-1)\bmod n + 1\),如果\(l>r\),则交换\(l,r\)

最终的询问区间为[l,r]。

输出格式:

输出\(m\)行。每行一个整数,表示每次询问的结果。

输入输出样例

输入样例#1:

6 3
1 2 3 2 1 2
1 5
3 6
1 5

输出样例#1:

1
2
1

说明

对于\(20\%\)的数据,保证\(1\le n,m\le 3000\)

对于\(100\%\)的数据,保证\(1\le n\le 40000,1\le m\le 50000,1\le a_i\le 10^9\)

思路

\(600\ AC\)!整理博客。 --Uranus

重新拾起分块这个毒瘤东西,并在\(alecli\)大佬的推荐下做了这道题。

我们把序列分成块,离散化之后记录每个数字在各个块内出现的次数,那么出现最多的就是众数了。这里我用数组\(s[i][j][k]\)表示第\(i\)块到第\(j\)块数字\(k\)的出现次数。然后我们统计区间众数,用\(md[i][j]\)记录众数大小,\(tms[i][j]\)记录众数出现次数。

预处理到这里就结束了,接下来考虑查询操作。对于每次查询的区间,一定是由一个大块和这个大块左边的一些数,以及右边的一些数组成的,那么显然,这个区间最后的众数为大块的众数,或者大块左边出现的数,或者大块右边出现的数。

那么我们就直接用之前统计出的大块的三个数组,在这个基础上把左右两小块用预处理时的相同方法加进来,统计答案后再把小块去掉,就可以很方便的查询并保持预处理数组了。

既然是分块,那么细节一定是很多的,具体来说有这几条:

  • 注意离散化,注意常数优化。
  • 如果查询区间不包含大块,直接把两个小块暴力处理。
  • \(alecli\)说分块的大小会影响时间复杂度,并告诉我块的大小最好为\(n^\frac{2}{3}\),虽然并不知道为什么。

只要耐心调试,最终一定能\(AC\)的,祝你好运!

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=4e4+5,MAXM=45;
int n,m,len,ans,cnt,a[MAXN],b[MAXN],c[MAXN];
int sz,num,l[MAXM],r[MAXM],belong[MAXN],s[MAXM][MAXM][MAXN],md[MAXM][MAXM],tms[MAXM][MAXM];
int read()
{
    int re=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
    return re;
}
void print(int x,bool first)
{
    if(!x)
    {
        if(first) putchar('0');
        return ;
    }
    print(x/10,false);
    putchar('0'+x%10);
}
void prework()
{
    num=pow(double(n),1.0/3.0),sz=n/num;
    for(int i=1;i<=num;i++) l[i]=r[i-1]+1,r[i]=sz*i;
    if(r[num]<n) num++,l[num]=r[num-1]+1,r[num]=n;
    for(int i=1;i<=num;i++)
        for(int j=l[i];j<=r[i];j++)
            belong[j]=i;
    sort(b+1,b+n+1);
    len=unique(b+1,b+n+1)-b-1;
    for(int i=1;i<=n;i++) c[i]=lower_bound(b+1,b+len+1,a[i])-b;
    for(int i=1;i<=num;i++)
        for(int j=i;j<=num;j++)
        {
            for(int k=l[i];k<=r[j];k++) s[i][j][c[k]]++;
            for(int k=1;k<=len;k++)
                if(tms[i][j]<s[i][j][k]||(tms[i][j]==s[i][j][k]&&k<md[i][j]))
                    md[i][j]=k,tms[i][j]=s[i][j][k];
        }
}
void ask(int ll,int rr)
{
    if(ll>rr) swap(ll,rr);
    int lbe=belong[ll],rbe=belong[rr],L,R;ans=cnt=0;
    if(rbe-lbe<=2) L=R=0;
    else L=lbe+1,R=rbe-1;
    if(L==R)
    {
        for(int i=ll;i<=rr;i++)
        {
            s[L][R][c[i]]++;
            if(cnt<s[L][R][c[i]]||(cnt==s[L][R][c[i]]&&ans>c[i]))
                cnt=s[L][R][c[i]],ans=c[i];
        }
        for(int i=ll;i<=rr;i++) s[L][R][c[i]]--;
    }
    else
    {
        ans=md[L][R],cnt=tms[L][R];
        for(int i=ll;i<=r[lbe];i++)
        {
            s[L][R][c[i]]++;
            if(cnt<s[L][R][c[i]]||(cnt==s[L][R][c[i]]&&ans>c[i]))
                cnt=s[L][R][c[i]],ans=c[i];
        }
        for(int i=l[rbe];i<=rr;i++)
        {
            s[L][R][c[i]]++;
            if(cnt<s[L][R][c[i]]||(cnt==s[L][R][c[i]]&&ans>c[i]))
                cnt=s[L][R][c[i]],ans=c[i];
        }
        for(int i=ll;i<=r[lbe];i++) s[L][R][c[i]]--;
        for(int i=l[rbe];i<=rr;i++) s[L][R][c[i]]--;
    }
    ans=b[ans];
}
int main()
{
    n=read(),m=read();
    for(int i=1;i<=n;i++) a[i]=b[i]=read();
    prework();
    while(m--)
    {
        int x=(read()+ans-1)%n+1,y=(read()+ans-1)%n+1;
        ask(x,y);
        print(ans,true);putchar('\n');
    }
    return 0;
}

Luogu P4168 [Violet]蒲公英

标签:离散   swa   uniq   wap   正整数   区间   正是   lower   复杂度   

原文地址:https://www.cnblogs.com/coder-Uranus/p/9884461.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!