标签:复杂度 ble 规则 信息 orm oid for 快速幂 递归
讲算法肯定要有相应的OJ,这里附上一道题,HDU5950
大佬博客:链接:https://www.jianshu.com/p/25eba927d9da
简单讲解下题意。F(n) = F(n-1) + 2F(n-2) + n4,且F(1) = a , F(2) = b,求F(n)%2147493647,其中a、b、n是待输入的参数
我们把解决这类题目的过程分解为如下步骤:
1. 把非线性递推式转化为线性递推式(线性递推式可忽略第一步)
2. 根据线性递推式得到F(n)和F(n+1)的矩阵序列
3. 根据F(n)和F(n+1)的矩阵序列得到中间的转移矩阵
4. 根据转移矩阵编写代码
首先把非线性递推式转换为线性递推式
∵ (n+1)4 = n4 + 4n3 + 6n2 + 4n + n0
∵ F(n+1) = F(n) + 2F(n-1) + (n+1)4
∴ F(n+1) = F(n) + 2F(n-1) + n4 + 4n3 + 6n2 + 4n + n0
然后我们看下下面的状态转移矩阵
图(1)
左边的矩阵表示F(n)
项的矩阵,右边的矩阵表示F(n+1)
项的矩阵。而中间的A矩阵就是需要求的转移矩阵。图(1)
左边的矩阵怎么得到?我们看刚才得到的递归式
F(n+1) = F(n) + 2F(n-1) + n4 + 4n3 + 6n2 + 4n + n0
我们把F(n)
放在矩阵顶部,表示第n项的值,然后剩下的元素F(n-1)
、 n4、n3、n2、n、 n0 ,去掉系数后与F(n)
一起构成一个矩阵。同理,F(n+1)
的矩阵也是F(n+1)
在顶部,表示第n+1项的值,然后剩下的元素F(n)
、 (n+1)4、(n+1)3、(n+1)2、(n+1)、 (n+1)0 去掉系数后与F(n+1)
构成一个矩阵。
好,我们现在得到了F(n)
和F(n+1)
的矩阵,那怎么求转移过去的矩阵A呢?首先,A是一个7×7的矩阵,且根据矩阵相乘规则,可以得到矩阵A,如下图(如果对矩阵相乘不熟悉的可以先看一下矩阵相乘哈)
好了,到现在为止,得到了图(2)
的转移矩阵后,我们解决了前三步,还剩最后一步。怎么把这个转移矩阵应用到代码里面呢?
题中给出了F(1) = a,F(2) = b
所以F(3) = 2a + b + 34 = 2a + b + 24 + 4×23 + 6×22 + 4×21 + 20
为了表述方便。图(3)
乘号左边的我们称为转移矩阵A
,乘号右边的四个矩阵分别为B2
、B3
、B4
、B5
……
且我们可以得到的信息有
B2 × A = B3、B3 × A = B4、B4 × A = B5 ……
B2 × A2 = B4、B2 × A3 = B5、B2 × A4 = B6 ……
然后我们惊奇的发现:B2 × An-2 = Bn(fn)
B2的数据都是已知的,所以现在我们需要得到的只是An-2的数据,在 上一篇文章中,我们需要得到的是An的矩阵,代码问题就解决了吧。
再炒一下上一篇文章的冷饭,本来是根据B2->B3->B4->B5->……->Bn
逐步递推得到Bn
。现在我们转化为矩阵后,需要求的是A^(n-2)
的数据,比如要求A^16
,那我就可以直接通过快速幂A^1->A^2->A^4->A^8->A^16
来得到了,复杂度由O(n)
转化成了O(logn)
#include <iostream> #include<bits/stdc++.h> using namespace std; const long long int N = 2147493647; //注意要用 long long int void Matrix(long long int (&a)[7][7],long long int b[7][7]) //还是一样的函数 { long long int tmp[7][7] = {0}; for(int i = 0; i < 7; ++i) for(int j = 0; j < 7; ++j) for(int k = 0; k < 7; ++k) tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % N; for(int i = 0; i < 7; ++i) for(int j = 0; j < 7; ++j) a[i][j] = tmp[i][j]; } int main(int argc, const char * argv[]) { long long int sum,T,a,b,n; cin>>T; while(T--) { cin>>n>>a>>b; if(n==1) { cout<<a<<endl; //为了方便读者理解,直接这么定义矩阵了 continue; } long long int temp[7][7] = {1, 2, 1, 4, 6, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1 }; //temp表示的是A^n,cot表示的是最后的结果 long long int cot[7][7] = {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1 }; n -= 2; while(n) //还是这5行核心代码 { if(n & 1) Matrix(cot,temp); Matrix(temp,temp); n /= 2; } sum = 0; //在得到A^(n-2)之后,还需要将B2*A^(n-2)得到Bn,而sum表示的是Bn的最顶部的元素值 sum = (sum + b*cot[0][0])%N; sum = (sum + a*cot[0][1])%N; sum = (sum + 16*cot[0][2])%N; sum = (sum + 8*cot[0][3])%N; sum = (sum + 4*cot[0][4])%N; sum = (sum + 2*cot[0][5])%N; sum = (sum + cot[0][6])%N; cout<<sum<<endl; } return 0; }
标签:复杂度 ble 规则 信息 orm oid for 快速幂 递归
原文地址:https://www.cnblogs.com/moomcake/p/9887307.html