标签:验证 建议 note als hadoop集群 home this names 本地
1.下载Hive安装包:官网下载:http://hive.apache.org/downloads.html
2.上传Hive的tar包,并解压:
建议和hadoop目录在一级,方便后续使用;
解压:tar -zxvf apache-hive-1.2.1-bin.tar.gz -C /home/hadoop/hive
修改解压后的文件名称:mv apache-hive-1.2.1-bin hive-1.2.1
3.安装MySql:
MySQL用于存储Hive的元数据,(安装教程见之前的文章)
4.修改配置文件:主要是配置metastore(元数据存储)存储方式
4.1. vi /home/hadoop/hive/hive-1.2.1/conf/hive-site.xml(存储方式:内嵌Derby方式、本地mysql、远端mysql)
4.2 粘贴如下内容:
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
<description>password to use against metastore database</description>
</property>
</configuration>
5.拷贝jar包:
拷贝mysql驱动jar包到Hive的lib目录下面去,
下载路径:https://pan.baidu.com/s/17iHOIjt4XZbRAngGFf_GgA
6.启动Hive:
(1)启动Hive之前需要先把Hadoop集群启动起来。
(2)使用hadoop用户
启动命令:/usr/local/src/hive-1.2.1/bin/hive
出现如下表示启动成功:
hive>
7、验证Hive运行正常:启动Hive以后输入下面的命令:
hive> show databases;
OK
default
test_db
Time taken: 0.567 seconds, Fetched: 2 row(s)
hive> use default;
OK
Time taken: 0.068 seconds
hive> show tables;
OK
Time taken: 0.086 seconds
8、 创建数据库, 数据库的数据文件被存放在HDFS的/user/hive/warehouse/test_db.db下面
hive> create database test_db;
OK
Time taken: 0.505 seconds
9、在test_db里创建表,表的数据文件被存放在HDFS的/user/hive/warehouse/test_db.db/t_test下面;
并且表的数据文件字段以“|”分割开;
use test_db;
create table flat1_test (mobile string,opr_type string,lastupdatetime string,monthly string,sp_code string,oper_code string,unknown string,subtime string)
row format delimited
fields terminated by ‘|‘;
10、上传数据文件到hdfs指定目录,目录为hive数据库表文件目录
hadoop fs -put hivefile1.txt /user/hive/warehouse/test_db.db/flat1_test
11、使用sql查询数据
hive> select * from flat1_test;
12、查询Hive的元数据,进入mysql中查询
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| hive |
| mysql |
| performance_schema |
| test |
+--------------------+
5 rows in set (0.00 sec)
mysql> use hive;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysql>
mysql> show tables;
+---------------------------+
| Tables_in_hive |
+---------------------------+
| BUCKETING_COLS |
| CDS |
| COLUMNS_V2 |
| DATABASE_PARAMS |
| DBS |
| FUNCS |
| FUNC_RU |
| GLOBAL_PRIVS |
| IDXS |
| INDEX_PARAMS |
| PARTITIONS |
| PARTITION_KEYS |
| PARTITION_KEY_VALS |
| PARTITION_PARAMS |
| PART_COL_PRIVS |
| PART_COL_STATS |
| PART_PRIVS |
| ROLES |
| SDS |
| SD_PARAMS |
| SEQUENCE_TABLE |
| SERDES |
| SERDE_PARAMS |
| SKEWED_COL_NAMES |
| SKEWED_COL_VALUE_LOC_MAP |
| SKEWED_STRING_LIST |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES |
| SORT_COLS |
| TABLE_PARAMS |
| TAB_COL_STATS |
| TBLS |
| TBL_COL_PRIVS |
| TBL_PRIVS |
| VERSION |
+---------------------------+
35 rows in set (0.01 sec)
mysql> select * from DBS;
+-------+-----------------------+-----------------------------------------------------------+---------+------------+------------+
| DB_ID | DESC | DB_LOCATION_URI | NAME | OWNER_NAME | OWNER_TYPE |
+-------+-----------------------+-----------------------------------------------------------+---------+------------+------------+
| 1 | Default Hive database | hdfs://XXXXXXXXXX:9000/user/hive/warehouse | default | public | ROLE |
| 6 | NULL | hdfs://XXXXXXXXXX:9000/user/hive/warehouse/test_db.db | test_db | hadoop | USER |
+-------+-----------------------+-----------------------------------------------------------+---------+------------+------------+
2 rows in set (0.00 sec)
mysql>
标签:验证 建议 note als hadoop集群 home this names 本地
原文地址:http://blog.51cto.com/devops2016/2312670