标签:dom 初始 输出 出错 blog tar names 相等 形状
最近学习强化学习和机器学习,意识到数据分析的重要性,就开始补Python的几个科学计算库,并总结到博客中。本篇博客中用到的代码在这里下载。
NumPy是Python数值计算最重要的基础包,支持高级大量的维度数组与矩阵运算,大多数提供科学计算的包都是使用Numpy的数组作为构建基础。Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库!
其部分功能如下:
需要一提的是,NumPy本身没有提供那么多高级的数据分析功能,但理解NumPy数组,以及面向数组的计算将有助于更加高效地使用诸如pandas之类的工具。当然,如果只是想用pandas简单处理下数据,可以跳过NumPy的学习,直接学习pandas。
对于大部分数据分析应用而言,需要关注的功能主要集中在:
NumPy数组在数值运算方面的效率优于Python提供的list容器。使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。
NumPy数组一般是同质的(但有一种特殊的数组类型例外,它是异质的),即数组中的所有元素类型必须是一致的。这样有一个好处:如果我们知道数组中的元素均为同一类型,该数组所需的存储空间就很容易确定下来。
NumPy是在一个连续的内存块中储存数据,独立于其他Python内置对象,比起Python的内置序列,Numpy数组使用的内存更少。
Numpy可以在整个数组上执行复杂的计算,而不需要for循环。
执行下面代码进行验证
1 import numpy as np
2 my_arr = np.arange(1000000)
3 my_list = list(range(1000000))
4 %time for _ in range(10): my_arr2 = my_arr * 2
5 %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
很明显,基于NumPy的算法要比纯Python快10到100倍(甚至更快),并且使用的内存更少。
NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。
进行数学运算:
这里可以很清晰的看出NumPy数组对整组数组的计算操作的简便之处。
注:一般在import时都是使用 import numpy as np。当然,也可以使用 for numpy import * ,但不建议这么做,因为numpy的命名空间很大,包含很多函数,其中一些的名字与Python的内置函数重名(如min和max)。
ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象):
创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组。
除np.array之外,还有一些函数也可以新建数组。比如,zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可。
注:认为np.empty会返回全0数组的想法是不安全的。很多情况下(如前所示),它返回的都是一些未初始化的垃圾值。
arrange是Python内置函数的数组版:
dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息。是NumPy灵活交互其它系统的源泉之一。多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如C、Fortran)”等工作变得更加简单。数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长的数字。标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类型在NumPy中就记作float64。下表列出了NumPy所支持的全部数据类型。
这里将介绍Numpy的一些基本计算
求最大值
求最小值
平均值
方差
转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性
在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积
对于高维数组,我们可以使用transpose进行转置操作(有点难懂)
在这里,如果我们使用arr.shape(),则会返回(2,2,4),第一个2表示两组,第二个则表示每组都有两行,4则表示4列。而这三个数字由一个元组(0,1,2)进行索引,所以使用arr.transpose((1, 0, 2))时,则表示将第一位数与第二位数交换位置。最终会得到图中所示结果。
当然,我们也可以使用.T进行操作,不过.T进行的只是轴对换而已。
ndarray还有一个swapaxes方法,它需要接受一对轴编号
矩阵拼接
NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多
如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。
先创建一个arr的切片
修改其中的值,会发现数组arr中的值也会改变
切片[ : ]会给数组中所有的值赋值
对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组
索引方式
在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据),且标量值和数组都可用于赋值。
ndarray的切片语法跟Python列表这样的一维对象差不多。对于之前的二维数组arr2d,其切片方式稍显不同
可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。
当然,也可以一次传入多个切片,像传入多个索引那样
像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。
来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数(上面表格中漏了这个)生成一些正态分布的随机数据:
假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组,这个布尔型数组课用于数组索引
注:布尔型数组的长度必须跟被索引的轴长度一致,如果布尔型数组的长度不对,布尔型选择就会出错。
此外,我们还可以将布尔型数组跟切片、整数(或整数序列)混合使用
如果我们要选取多个名字,则组合应用多个布尔条件,使用 &、| 之类的布尔算术运算符即可
注:通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。
花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组
array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.],
[ 2., 2., 2., 2.],
[ 3., 3., 3., 3.],
[ 4., 4., 4., 4.],
[ 5., 5., 5., 5.],
[ 6., 6., 6., 6.],
[ 7., 7., 7., 7.]])
为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可
使用负数索引将会从末尾开始选取行
一次传入多个索引数组会返回一个一维数组,其中的元素对应各个索引元组
注:花式索引跟切片不一样,它总是将数据复制到新数组中。
NumPy可生成随机数,这些随机数是通过算法基于随机数生成器种子,在确定性条件下生成的,是伪随机数。我们可以使用normal来得到标准正态分布的样本数组,并且,在需要产生大量随机数时,NumPy的随机数生成速度比Python内置的random快了不止一个数量级
同时,我们可以用NumPy的np.random.seed更改随机数生成种子
np.random.seed(1234)
numpy.random的数据生成函数使用了全局的随机种子。要避免全局状态,我们可以使用numpy.random.RandomState,创建一个与其它隔离的随机数生成器
rng = np.random.RandomState(1234) rng.randn(10) Out: array([ 0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596, -0.6365, 0.0157, -2.2427])
下图给出了numpy.random中的部分函数
下面属于补充了
我们可以通过模拟随机漫步来说明如何运用数组运算。先来看一个简单的随机漫步的例子:从0开始,步长1和-1出现的概率相等。
这提示就是随机漫步中各步的累计和,可以用一个数组运算来实现。因此,我用np.random模块一次性随机产生1000个“掷硬币”结果(即两个数中任选一个),将其分别设为1或-1,然后计算累计和
有了这些数据之后,我们就可以沿着漫步路径做一些统计工作了,比如求取最大值和最小值等
1 walk.min() 2 3 walk.max()
再看一个复杂点的统计任务——首次穿越时间,即随机漫步过程中第一次到达某个特定值的时间。假设我们想要知道本次随机漫步需要多久才能距离初始0点至少10步远(任一方向均可)。np.abs(walk)>=10可以得到一个布尔型数组,它表示的是距离是否达到或超过10,而我们想要知道的是第一个10或-10的索引。可以用argmax来解决这个问题,它返回的是该布尔型数组第一个最大值的索引(True就是最大值):
In [103]: (np.abs(walk) >= 10).argmax() Out[103]: 57
如果你希望模拟多个随机漫步过程(比如5000个),只需对上面的代码做一点点修改即可生成所有的随机漫步过程。只要给numpy.random的函数传入一个二元元组就可以产生一个二维数组,然后我们就可以一次性计算5000个随机漫步过程的累计和了:
In [105]: nwalks = 5000 nsteps = 1000 draws = np.random.randint(0, 2, size=(nwalks, nsteps)) steps = np.where(draws > 0, 1 , -1) walks = steps.cumsum(1) walks Out[105]: array([[-1, 0, -1, ..., 12, 11, 10], [ 1, 2, 3, ..., -2, -1, 0], [-1, 0, 1, ..., 34, 35, 36], ..., [ 1, 0, -1, ..., 32, 33, 32], [ 1, 0, 1, ..., 20, 21, 22], [-1, 0, -1, ..., 18, 19, 18]], dtype=int32)
剩下的数据处理就由你们自行发挥了。
上面只介绍了NumPy的部分内容,剩下的如归一化操作,排序,文件输入输出(大部分人都用pandas加载文本或表格数据)等等都没写入,但都在代码中给出了示例。头一回博客写这么长(虽说图片居多),中间还几次页面错误没保存。。。如有错误,欢迎大家指正。
参考博客:
https://www.jianshu.com/p/a380222a3292
https://www.jianshu.com/p/83c8ef18a1e8
https://blog.csdn.net/qq351469076/article/details/78817378
参考书籍:
《利用Python进行数据分析·第2版》
标签:dom 初始 输出 出错 blog tar names 相等 形状
原文地址:https://www.cnblogs.com/csu-lmw/p/9909643.html