码迷,mamicode.com
首页 > 其他好文 > 详细

数学期望

时间:2018-11-08 00:26:55      阅读:171      评论:0      收藏:0      [点我收藏+]

标签:积分   数学   间隔   class   泊松分布   离散   ase   isp   使用   

数学期望

  • X 为随机变量,它不会出现在函数的具体表示中,而是在抽象的表示中,也就是说会出现在\(E(X)\),这个X不会出现在$E(X) = $的右侧,在右侧中X要对应的使用x来替代。在P,E中放的一定是随机变量,是大写的字母,这才符合概率论。
  • 密度函数对R的积分为1。
  • 离散的情况不会使用到积分,但是在连续的情况一定会使用到积分,所有如果我们有了一个密度函数,则暗示着是连续的,如果没有则是离散的;这也为我们记忆一些公式提供了方便,我们首先考虑记忆密度函数,如果这个分布是离散的,如泊松分布,则记忆分布函数。
  • 连续性数学期望\(E(X) = \int_{-\infty}^{\infty}{xf(x)}\),数学期望为随机变量乘以密度函数,在右侧X转为x。
  • 泊松分布是离散的,因为泊松分布表示的是事件发生的次数,而次数是离散的,所有在推\(E(X)\)的时候我们使用离散的数学期望公式,分布函数为\(P(X) = {\lambda^{k}\over{k!}}\lambda^{k}\)
  • 指数分布是两件事情发生的平均间隔时间,时间是连续变量,所以指数分布是一种连续随机变量的分布,正态分布也是连续的。
  • 均匀分布,不要参考书上的,均匀分布的概率密度函数就是
    \[ f(x) = \begin{cases} {1 \over S_D} & a < x < b \0 & others \end{cases} \]

数学期望

标签:积分   数学   间隔   class   泊松分布   离散   ase   isp   使用   

原文地址:https://www.cnblogs.com/megachen/p/9926348.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!