码迷,mamicode.com
首页 > 其他好文 > 详细

CCPC 2016-2017, Finals Solution

时间:2018-11-10 20:08:01      阅读:251      评论:0      收藏:0      [点我收藏+]

标签:+=   div   splay   pos   它的   spl   bfd   ons   sign   

A - The Third Cup is Free

水。

技术分享图片
 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 const int maxn = 1e5 + 10;
 6 
 7 int n;
 8 int arr[maxn];
 9 
10 int main()
11 {
12     int t;
13     scanf("%d", &t);
14     for(int cas = 1; cas <= t; ++cas)
15     {
16         scanf("%d", &n);
17         for(int i = 1; i <= n; ++i) scanf("%d", arr + i);
18         sort(arr + 1, arr + 1 + n);
19         int ans = 0;
20         int cnt = 0;
21         for(int i = n; i >= 1; --i)
22         {
23             cnt++;
24             if(cnt == 3)
25             {
26                 arr[i] = 0;
27                 cnt = 0;
28             }
29             ans += arr[i];
30         }
31         printf("Case #%d: %d\n", cas, ans);
32     }
33     return 0;
34 }
View Code

 

B - Wash

题意:有n个洗衣机,有m个烘干机,要洗L件衣服,最后一件衣服洗完的最少时间

思路:将n个洗衣机扩展成L个洗衣机,将m个烘干机扩展成L个烘干机,那么贪心分配即可。

即用时最少的洗衣机和用时最多的烘干机配对,扩展的话,将n个洗衣机都进堆,然后依次取出,再丢进去,丢进去的时候加上它的洗衣时间即可。

技术分享图片
 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 typedef long long ll;
 6 const int maxn = 1e6 + 10;
 7 
 8 struct node{
 9     ll  cost, now;
10     node(){}
11     node(ll cost, ll now): cost(cost), now(now){}
12     bool operator < (const node & b) const
13     {
14         return now > b.now;
15     }
16 };
17 
18 int l, n, m;
19 ll arr[maxn];
20 
21 int main()
22 {
23     int t;
24     scanf("%d", &t);
25     for(int cas = 1; cas <= t; ++cas)
26     {
27         scanf("%d %d %d", &l, &n, &m);
28         priority_queue<node>q1, q2;
29         for(int i = 1; i <= n; ++i)
30         {
31             int x;
32             scanf("%d", &x);
33             q1.push(node(x, x));
34         }
35         for(int i = 1; i <= m; ++i)
36         {
37             int x;
38             scanf("%d", &x);
39             q2.push(node(x, x));
40         }
41         for(int i = 1; i <= l; ++i)
42         {
43             node tmp = q1.top();
44             q1.pop();
45             arr[i] = tmp.now;
46             tmp.now += tmp.cost;
47             q1.push(tmp);
48         }
49         ll ans = 0;
50         for(int i = l; i >= 1; --i)
51         {
52             node tmp = q2.top();
53             q2.pop();
54             ans = max(ans, tmp.now + arr[i]);
55             tmp.now += tmp.cost;
56             q2.push(tmp);
57         }
58         printf("Case #%d: %lld\n", cas, ans);
59     }
60     return 0;
61 }
View Code

 

C - Mr.Panda and Survey

留坑。

 

D - Game Leader

留坑。

 

E - Problem Buyer

题意:出题人有n道题目,主办方需要m道不同难度题目,出题人的题目有一个难度范围,如果主办方需要买k道题目,那么出题人就从n道题目中随机选取k道给主办方,主办方要使得不论出题人如何给出k道题都能满足他的要求,求最小的k

思路:我们先考虑主办方只需要一道题的情况,答案显然是不符合那道题的其他题目个数+1

那么再考虑推广到m的情况,将区间排序,并且将题目难度也排序,从左至右用优先队列维护里面的区间是否满足,那么不满足的个数就是n - 优先队列里面的元素个数   那么显然对于这道题,至少要取 不满足个数+1  再考虑一个区间只能给一个题目,那么每次扫过去的时候pop出一个即可, $那么我们求出最大的x_i + 1 即可   x_i表示不满足第i个题目的区间有多少个$

技术分享图片
 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 const int maxn = 1e5 + 10;
 6 
 7 struct node{
 8     int l, r;
 9     node(){}
10     node(int l, int r):l(l), r(r){}
11     bool operator < (const node &b)const
12     {
13         return r > b.r;
14     }
15 }arr[maxn];
16 
17 int cmp(node a, node b)
18 {
19     if(a.l == b.l) return a.r > b.r;
20     else return a.l < b.l;
21 }
22 
23 int n, m;
24 int brr[maxn];
25 
26 int main()
27 {
28     int t;
29     scanf("%d", &t);
30     for(int cas = 1; cas <= t; ++cas)
31     {
32         scanf("%d %d", &n, &m);
33         for(int i = 1; i <= n; ++i) scanf("%d %d", &arr[i].l, &arr[i].r);
34         for(int i = 1; i <= m; ++i) scanf("%d", brr + i);
35         sort(arr + 1, arr + 1 + n, cmp);
36         sort(brr + 1, brr + 1 + m);
37         priority_queue<node>q;
38         int ans = 0;
39         int j = 1;
40         for(int i = 1; i <= m; ++i)
41         {
42             while(j <= n && arr[j].l <= brr[i]) q.push(arr[j++]);
43             while(!q.empty() && q.top().r < brr[i]) q.pop();
44             int tmp = q.size();
45             ans = max(ans, n - tmp + 1);
46             if(ans > n) break;
47             q.pop();
48         }
49         if(ans > n) printf("Case #%d: IMPOSSIBLE!\n", cas);
50         else printf("Case #%d: %d\n", cas, ans);
51     }
52     return 0;
53 }
View Code

 

F - Periodical Cicadas

留坑。

 

G - Pandaland

题意:给出一张图,找一个最小环(边权和最小)

思路:枚举每一条边为两个端点跑最短路,如果跑的通即存在环,更新答案即可。

但是正解应该是:

求最小生成树,每次枚举非树边,就是树上两个距离+边权

技术分享图片
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define INFLL 0x3f3f3f3f3f3f3f3f
 6 #define N 8010
 7 #define pii pair <int, int>
 8 int t, n, m; 
 9 map <pii, int> mp;
10 
11 struct Edge 
12 {
13     struct node
14     {
15         int to, nx, w, vis; 
16         node() {}
17         node(int to, int nx, int w, int vis = 1) : to(to), nx(nx), w(w), vis(vis) {} 
18     }a[N << 1];
19     int head[N], pos;
20     void init() { memset(head, 0, sizeof head); pos = -1; } 
21     void add(int u, int v, int w)
22     {
23         a[++pos] = node(v, head[u], w); head[u] = pos;
24         a[++pos] = node(u, head[v], w); head[v] = pos;  
25     }
26 }G;
27 #define erp(u) for (int it = G.head[u], v = G.a[it].to, w = G.a[it].w; it; it = G.a[it].nx, v = G.a[it].to, w = G.a[it].w)
28 
29 int Hash(int x, int y)
30 {
31     if (mp.find(pii(x, y)) == mp.end()) mp[pii(x, y)] = ++n;
32     return mp[pii(x, y)]; 
33 }
34 
35 struct node
36 {
37     int to; ll w;
38     node () {}
39     node (int to, ll w) : to(to), w(w) {}
40     bool operator < (const node &r) const
41     {
42         return w > r.w;
43     }
44 };
45 
46 ll dist[N]; bool used[N];
47 
48 void Dijkstra(int st, int ed)
49 {
50     for (int i = 1; i <= n; ++i) dist[i] = INFLL, used[i] = false;
51     priority_queue <node> q; q.emplace(st, 0); dist[st] = 0;
52     while (!q.empty())
53     {
54         int u = q.top().to; q.pop();
55         if(u == ed) return ;
56         if (used[u]) continue;
57         used[u] = 1;
58         erp(u) if (G.a[it].vis)
59         {
60             if (!used[v] && dist[v] > dist[u] + w)
61             {
62                 dist[v] = dist[u] + w;
63                 q.emplace(v, dist[v]);
64             }
65         }
66     }
67 }
68 
69 int main()
70 {
71     scanf("%d", &t);
72     for (int kase = 1; kase <= t; ++kase)
73     {
74         printf("Case #%d: ", kase);
75         scanf("%d", &m);
76         mp.clear(); n = 0; G.init();
77         for (int i = 1, x[2], y[2], w, u, v; i <= m; ++i)
78         {
79             for (int j = 0; j < 2; ++j) scanf("%d%d", x + j, y + j);
80             scanf("%d", &w); u = Hash(x[0], y[0]); v = Hash(x[1], y[1]);
81             G.add(u, v, w);
82         }
83         ll res = INFLL; 
84         for (int i = 0; i <= m - 1; ++i)
85         {
86             G.a[2 * i].vis = 0; G.a[2 * i + 1].vis = 0;
87             int u = G.a[2 * i].to, v = G.a[2 * i + 1].to;
88             Dijkstra(u, v);
89             res = min(res, G.a[2 * i].w + dist[v]);
90             G.a[2 * i].vis = 1; G.a[2 * i + 1].vis = 1;
91         }
92         if (res == INFLL) res = 0;
93         printf("%lld\n", res);
94     }
95     return 0;
96 }
View Code

 

 

H - Engineer Assignment

题意:有b个工程,m个工程师,每个工程师只能分配给一个工程,每个工程师会一些学科,每门工程需要一些学科,一个工程只有当它需要的学科中至少有一个分配到的工程师会,它才能够完成,求如何分配工程师使得完成的工程最多

思路:考虑$s_i$表示一个工程可以完成的工程师组合

$有转移方程 dp[i][j] = max(dp[i][j], dp[i - 1][j - s]) $

$i 表示 第i个工程,j 表示二进制状态 然后 dp 即可$

技术分享图片
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 int t, n, m;
 5 vector <int> v[20], a[20], b[20];  
 6 int cnt[120], dp[20][2048]; 
 7 
 8 bool ok(int x)
 9 {
10     for (auto it : a[x]) if (!cnt[it])
11         return false;
12     return true;
13 }
14 
15 int main()
16 {
17     scanf("%d", &t);
18     for (int kase = 1; kase <= t; ++kase)
19     {
20         printf("Case #%d: ", kase);
21         scanf("%d%d", &n, &m);
22         for (int i = 1, t; i <= n; ++i) 
23         {
24             scanf("%d", &t);
25             a[i].clear();
26             for (int j = 1, x; j <= t; ++j) 
27             {
28                 scanf("%d", &x);
29                 a[i].push_back(x);
30             }
31         }
32         for (int i = 1, t; i <= m; ++i) 
33         {
34             scanf("%d", &t); b[i].clear();
35             for (int j = 1, x; j <= t; ++j) 
36             {
37                 scanf("%d", &x);
38                 b[i].push_back(x);
39             }
40         }
41         for (int i = 1; i <= n; ++i)
42         {
43             v[i].clear(); 
44             for (int j = 1; j < (1 << m); ++j)
45             {
46                 memset(cnt, 0, sizeof cnt);
47                 for (int k = 0; k < 10; ++k) if ((1 << k) & j) for (auto it : b[k + 1])
48                         cnt[it] = 1;
49                 if (ok(i)) v[i].push_back(j);
50             }
51         }
52         int res = 0;
53         memset(dp, 0, sizeof dp);
54         for (int i = 1; i <= n; ++i) 
55         {
56             for (int j = 1; j < (1 << m); ++j) for (auto it : v[i]) if ((j & it) == it) 
57                 dp[i][j] = max(dp[i][j], dp[i - 1][j - it] + 1), res = max(res, dp[i][j]);
58             for (int j = 1; j < (1 << m); ++j) dp[i][j] = max(dp[i][j], dp[i - 1][j]);    
59         }
60         printf("%d\n", res);
61     }
62     return 0;
63 }
View Code

 

I - Mr. Panda and Crystal

题意:有n种物品,有的物品可以直接生成,有的可以不生成,需要合成,会给出一个合成方程,每种物品有价值,有一个容量为m的背包,求装下哪些物品使得价值最大

思路:最短路求出每个物品的最小生成成本,再做完全背包即可。

技术分享图片
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 #define ll long long 
 5 #define N 40010
 6 #define INFLL 0x3f3f3f3f3f3f3f3f
 7 #define pii pair <int, int>
 8 int t, m, n, k;
 9 ll v[N], dp[N];
10 
11 struct EXP
12 {
13     int to; 
14     vector <pii> v; 
15 }ex[N];  
16 vector <int> G[N]; 
17 
18 struct node
19 {
20     int to; ll w;
21     node () {}
22     node (int to, ll w) : to(to), w(w) {}
23     bool operator < (const node &r) const { return w > r.w; }
24 }; 
25 
26 ll dist[N]; bool used[N]; 
27 void Dijkstra()
28 {
29     priority_queue <node> q; 
30     for (int i = 1; i <= n; ++i) if (dist[i] != INFLL) q.emplace(i, dist[i]);
31     while (!q.empty())
32     {
33         int u = q.top().to; q.pop();
34         if (used[u]) continue;
35         used[u] = 1;
36         for (auto it : G[u])
37         {
38             ll tmp = 0;
39             for (auto it2 : ex[it].v) 
40             {
41                 int to = it2.first, w = it2.second;
42                 if (dist[to] == INFLL)
43                 {
44                     tmp = INFLL;
45                     break;
46                 }
47                 else
48                     tmp += dist[to] * w;
49             }
50             int v = ex[it].to;
51             if (!used[v] && dist[v] > tmp)
52             {
53                 dist[v] = tmp;
54                 q.emplace(v, dist[v]);
55             }
56         }    
57     }
58 }
59 
60 int main()
61 {
62     scanf("%d", &t);
63     for (int kase = 1; kase <= t; ++kase)
64     {
65         printf("Case #%d: ", kase);
66         scanf("%d%d%d", &m, &n, &k);
67         for (int i = 1; i <= n; ++i) dist[i] = INFLL, used[i] = 0;     
68         for (int i = 1, vis; i <= n; ++i)
69         {
70             scanf("%d", &vis); if (vis) scanf("%lld", dist + i);
71             scanf("%lld", v + i); 
72             G[i].clear();
73         }
74         for (int i = 1, t; i <= k; ++i)
75         {
76             scanf("%d", &ex[i].to); ex[i].v.clear();   
77             scanf("%d", &t);
78             for (int j = 1, x, y; j <= t; ++j)
79             {
80                 scanf("%d%d", &x, &y);
81                 ex[i].v.push_back(pii(x, y));
82                 G[x].push_back(i);
83             }
84         }
85         Dijkstra();
86         memset(dp, 0, sizeof dp);
87         for (int i = 1; i <= n; ++i)
88         {
89             for (int j = dist[i]; j <= m; ++j)
90                 dp[j] = max(dp[j], dp[j - dist[i]] + v[i]); 
91         }
92         printf("%lld\n", dp[m]);
93     }
94     return 0;
95 }
View Code

 

J - Worried School

水。

技术分享图片
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 int t, g; string tar;
 5 set <string> se;
 6 string s[6][100];
 7 
 8 void work()
 9 {
10     for (int i = 1; i <= 20; ++i)
11     {
12         for (int j = 0; j < 5; ++j) 
13         {
14             if (s[j][i] == tar) return;
15             se.insert(s[j][i]);
16         }
17     }
18 }
19 
20 void work2()
21 {
22     for (int i = 1; i <= 20; ++i) 
23     {
24         if (s[5][i] == tar) return;
25         se.insert(s[5][i]);
26     }
27 }
28 
29 int main()
30 {
31     ios::sync_with_stdio(false);
32     cin.tie(0);
33     cout.tie(0);
34     cin >> t;
35     for (int kase = 1; kase <= t; ++kase)
36     {
37         cout << "Case #" << kase << ": "; 
38         cin >> g >> tar;
39         se.clear();
40         for (int i = 0; i < 6; ++i) for (int j = 1; j <= 20; ++j) cin >> s[i][j];
41         work(); 
42         if (se.size() >= g)
43         {
44             cout << "0\n";
45             continue;
46         }
47         int res = g - (int)se.size();
48         work2();
49         if (se.size() < g) cout << "ADVANCED!\n"; 
50         else cout << max(0, res) << "\n";
51     }
52     return 0;
53 }
View Code

 

K - Lazors

留坑。

 

L - Daylight Saving Time

按题意模拟即可。

技术分享图片
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 struct node 
 5 {
 6     int h, m, s;
 7     node () {}
 8     node (int h, int m, int s) : h(h), m(m), s(s) {}
 9 }a;
10 int t, Year, Mon, Day;
11 int num[2][13] = 
12 {
13     0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
14     0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
15 };
16 
17 int ok(int x)
18 {
19     if ((x % 4 == 0 && x % 100 != 0) || x % 400 == 0) return 1;
20     return 0;
21 }
22 
23 int calc(int y, int m, int d)
24 {
25     int res = 0;
26     for (int i = 2007; i < y; ++i)
27         res += 365 + ok(i);
28     for (int i = 1; i < m; ++i) res += num[ok(y)][i];
29     res += d;
30     return (res - 1) % 7 + 1;
31 }
32 
33 int main()
34 {
35     scanf("%d", &t);
36     for (int kase = 1; kase <= t; ++kase)
37     {
38         printf("Case #%d: ", kase);
39         scanf("%04d-%02d-%02d %02d:%02d:%02d", &Year, &Mon, &Day, &a.h, &a.m, &a.s); 
40         if (Mon == 3)
41         {  
42             int tar = 15 - calc(Year, 3, 1); 
43             if (Day == tar) 
44             { 
45                 if (a.h == 2) puts("Neither");
46                 else if (a.h < 2) puts("PST");  
47                 else puts("PDT");    
48             } 
49             else puts(Day < tar ? "PST" : "PDT");
50         }
51         else if (Mon == 11)
52         {
53             int tar = 8 - calc(Year, 11, 1);
54             if (Day == tar)
55             {
56                 if (a.h == 1) puts("Both");
57                 else if (a.h < 1) puts("PDT");
58                 else puts("PST");
59             }
60             else puts(Day < tar ? "PDT" : "PST");
61         }
62         else puts(Mon < 3 ? "PST" : "PDT"); 
63     }
64     return 0;
65 }
View Code

 

CCPC 2016-2017, Finals Solution

标签:+=   div   splay   pos   它的   spl   bfd   ons   sign   

原文地址:https://www.cnblogs.com/Dup4/p/9940219.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!