标签:1.0 lan kernel class seed sam ilo sklearn import
from sklearn.svm import SVR
import numpy as np
n_samples, n_features = 10, 5
np.random.seed(0)
y = np.random.randn(n_samples)
x= np.random.randn(n_samples, n_features)
clf = SVR(gamma=‘scale‘, C=1.0, epsilon=0.2)
clf.fit(x, y)
print clf.predict(x)
[0.8867917 0.60015717 0.98330982 1.84870095 0.91180516 0.37960652
1.03115487 0.04864277 0.33332094 0.33921419]
from sklearn.svm import SVR
import numpy as np
n_samples, n_features = 10, 5
np.random.seed(0)
y = np.random.randn(n_samples)
X = np.random.randn(n_samples, n_features)
clf = SVR(kernel="poly",degree=3,gamma="scale",C=0.8)
clf.fit(X, y)
clf.predict(X)
标签:1.0 lan kernel class seed sam ilo sklearn import
原文地址:http://blog.51cto.com/13959448/2315717