标签:复杂度 not log time code com leetcode == pre
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
left | right
a[0] ... a[i-1] | a[i] ... a[m]
b[0] ... b[j-1] | b[j] ... b[n]
对于两个数组,如上所示,保证max(left) <= min(right)同时左边数的个数为中位数个数即(m+n+1)/2.就可以找到中位数的值.
可先取a数组i = m/2,那j = mid(中位数) - i;如果a[i - 1]大于b[j]不能保证max(left) <= min(right)就需要把a的扣掉一个,b[j - 1]和a[i]也是一样的情况.当上面两种都不符合时,就说明已经找到中位数的位置.
class Solution
{
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
int l1 = nums1.size();
int l2 = nums2.size();
int l = l1 + l2;
if (l1 > l2)
{
nums1.swap(nums2);
l1 = l - l1;
l2 = l - l1;
}
int mid = (l + 1) / 2;
int min = 0;
int max = l1;
while(min <= max)
{
int i = (min + max) / 2;
int j = mid - i;
if (i < max && nums2[j - 1] > nums1[i])
min = i + 1;
else if (i > min && nums1[i - 1] > nums2[j])
max = i - 1;
else
{
int left = 0;
if (i == 0)
left = nums2[j - 1];
else if (j == 0)
left = nums1[i - 1];
else
left = nums2[j - 1] > nums1[i - 1] ? nums2[j - 1] : nums1[i - 1];
if (l % 2 != 0)
return left;
int right = 0;
if (i == l1)
right = nums2[j];
else if (j == l2)
right = nums1[i];
else
right = nums2[j] > nums1[i] ? nums1[i] : nums2[j];
return double(left + right) / 2.0;
}
}
return 0.0;
}
};
时间复杂度: O(log(m+n)).
空间复杂度: O(1).
#leetcode-algorithms-4 Median of Two Sorted Arrays
标签:复杂度 not log time code com leetcode == pre
原文地址:https://www.cnblogs.com/mathli/p/9969553.html