码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习的建议

时间:2018-11-19 11:00:01      阅读:203      评论:0      收藏:0      [点我收藏+]

标签:因此   lin   设计   测试   哪些   模型   测试的   关系   区别   

机器学习的建议

开始设计一个机器学习系统

  • 在刚刚开始入手一个机器学习项目的时候, 应该着手于如何将快速实现机器学习算法, 并立刻使用交叉验证的数据集合进行验证, 计算出损失值\(J_{cv}\), 而不是在一开始设计的时候就考虑很多的因素, 比如是否需要更多的特征, 或者需要更多的样本, 实际上, 在没有一个已经实现了的机器学习算法的情况下, 是否需要更多的特征或者更多的样本是未知的, 因此建议先实现一个简单粗暴的机器学习算法, 发现其中的问题, 有哪些地方可以优化, 应该朝那个方向优化, 是需要更多的特征, 还是更多的样本, 还是修改学习率, 还是修改正则化参数。

第一次快速实现了一个简单的机器学习算法之后

  • 绘制出学习曲线, 也就是说上面提到的误差值与样本数量或者特征数量关系
    • 假设我们现在有100个样本, 3个特征, 将其中60个划分为训练样本, 20个划分为交叉验证样本, 20个划分为测试样本
    • 我们的目标是画出\(J_{train}\), \(J_{cv}\)与样本数量的学习曲线
    • 写一个for循环, 将输入的样本数量从1一直迭代到60, 在每一个循环中, 我们都计算出模型的参数(也就是生成一个模型), 计算训练误差值\(J_{train}\), 将这个误差保存到列向量中, 同时计算出交叉验证误差\(J_{cv}\), 也保存到另外一个列向量中。
    • 在回顾一个一遍, 在for循环中, 我们通过输入训练样本获取到了模型, 接着再一次将训练样本输入到模型中得到一个误差值, 这个就是训练误差; 接着将交叉验证样本输入到模型中, 得到一个误差值, 这个就是交叉验证误差
    • 画出学习曲线
    • 从学习曲线的结果来看, 主要还是看\(J_{cv}\)的变化, 因为\(J_{train}\)的结果可能会比较乐观
    • 注意点: 在绘制学习曲线的时候, \(J_{train}\), \(J_{cv}\)都是必要求的, 值得注意的是, 这里的\(J_{train}\)和在训练的时候使用到的\(J_{train}\)还是有一点区别的, 后者是在不点迭代更新参数产生的误差, 当这个值达到了我们的阈值则表示我们的参数已经训练好了, 也就是我们的模型出来了, 这里更加强调训练的概念; 而前者则更加强调测试的概念, 也就说从训练集中出来的模型在使用训练集中的数据进行测试。

机器学习的建议

标签:因此   lin   设计   测试   哪些   模型   测试的   关系   区别   

原文地址:https://www.cnblogs.com/megachen/p/9981380.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!