标签:function length bind exp .cpp block inpu further multi
The Point Cloud Library provides point cloud compression functionality. It allows for encoding all kinds of point clouds including “unorganized” point clouds that are characterized by non-existing point references, varying point size, resolution, density and/or point ordering. Furthermore, the underlying octree data structure enables to efficiently merge point cloud data from several sources.
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/compression/octree_pointcloud_compression.h>
#include <stdio.h>
#include <sstream>
#include <stdlib.h>
#ifdef WIN32
# define sleep(x) Sleep((x)*1000)
#endif
class SimpleOpenNIViewer
{
public:
SimpleOpenNIViewer () :
viewer (" Point Cloud Compression Example")
{
}
void
cloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &cloud)
{
if (!viewer.wasStopped ())
{
// stringstream to store compressed point cloud
std::stringstream compressedData;
// output pointcloud
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZRGBA> ());
// compress point cloud
PointCloudEncoder->encodePointCloud (cloud, compressedData);
// decompress point cloud
PointCloudDecoder->decodePointCloud (compressedData, cloudOut);
// show decompressed point cloud
viewer.showCloud (cloudOut);
}
}
void
run ()
{
bool showStatistics = true;
// for a full list of profiles see: /io/include/pcl/compression/compression_profiles.h
pcl::io::compression_Profiles_e compressionProfile = pcl::io::MED_RES_ONLINE_COMPRESSION_WITH_COLOR;
// instantiate point cloud compression for encoding and decoding
PointCloudEncoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> (compressionProfile, showStatistics);
PointCloudDecoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> ();
// create a new grabber for OpenNI devices
pcl::Grabber* interface = new pcl::OpenNIGrabber ();
// make callback function from member function
boost::function<void
(const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f = boost::bind (&SimpleOpenNIViewer::cloud_cb_, this, _1);
// connect callback function for desired signal. In this case its a point cloud with color values
boost::signals2::connection c = interface->registerCallback (f);
// start receiving point clouds
interface->start ();
while (!viewer.wasStopped ())
{
sleep (1);
}
interface->stop ();
// delete point cloud compression instances
delete (PointCloudEncoder);
delete (PointCloudDecoder);
}
pcl::visualization::CloudViewer viewer;
pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudEncoder;
pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudDecoder;
};
int
main (int argc, char **argv)
{
SimpleOpenNIViewer v;
v.run ();
return (0);
}
#include <pcl/point_cloud.h>
#include <pcl/octree/octree_search.h>
#include <iostream>
#include <vector>
#include <ctime>
int
main (int argc, char** argv)
{
srand ((unsigned int) time (NULL));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
// Generate pointcloud data
cloud->width = 1000;
cloud->height = 1;
cloud->points.resize (cloud->width * cloud->height);
for (size_t i = 0; i < cloud->points.size (); ++i)
{
cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
}
float resolution = 128.0f;
pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree (resolution);
octree.setInputCloud (cloud);
octree.addPointsFromInputCloud ();
pcl::PointXYZ searchPoint;
searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
// Neighbors within voxel search
std::vector<int> pointIdxVec;
if (octree.voxelSearch (searchPoint, pointIdxVec))
{
std::cout << "Neighbors within voxel search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z << ")"
<< std::endl;
for (size_t i = 0; i < pointIdxVec.size (); ++i)
std::cout << " " << cloud->points[pointIdxVec[i]].x
<< " " << cloud->points[pointIdxVec[i]].y
<< " " << cloud->points[pointIdxVec[i]].z << std::endl;
}
// K nearest neighbor search
int K = 10;
std::vector<int> pointIdxNKNSearch;
std::vector<float> pointNKNSquaredDistance;
std::cout << "K nearest neighbor search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with K=" << K << std::endl;
if (octree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)
{
for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
std::cout << " " << cloud->points[ pointIdxNKNSearch[i] ].x
<< " " << cloud->points[ pointIdxNKNSearch[i] ].y
<< " " << cloud->points[ pointIdxNKNSearch[i] ].z
<< " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
}
// Neighbors within radius search
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
float radius = 256.0f * rand () / (RAND_MAX + 1.0f);
std::cout << "Neighbors within radius search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with radius=" << radius << std::endl;
if (octree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
{
for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
std::cout << " " << cloud->points[ pointIdxRadiusSearch[i] ].x
<< " " << cloud->points[ pointIdxRadiusSearch[i] ].y
<< " " << cloud->points[ pointIdxRadiusSearch[i] ].z
<< " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
}
}
Spatial change detection on unorganized point cloud data
An octree is a tree-based data structure for organizing sparse 3-D data. In this tutorial we will learn how to use the octree implementation for detecting spatial changes between multiple unorganized point clouds which could vary in size, resolution, density and point ordering. By recursively comparing the tree structures of octrees, spatial changes represented by differences in voxel configuration can be identified. Additionally, we explain how to use the pcl octree “double buffering” technique allows us to efficiently process multiple point clouds over time.
#include <pcl/point_cloud.h>
#include <pcl/octree/octree_pointcloud_changedetector.h>
#include <iostream>
#include <vector>
#include <ctime>
int main (int argc, char** argv)
{
srand ((unsigned int) time (NULL));
// Octree resolution - side length of octree voxels
float resolution = 32.0f;
// Instantiate octree-based point cloud change detection class
pcl::octree::OctreePointCloudChangeDetector<pcl::PointXYZ> octree (resolution);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudA (new pcl::PointCloud<pcl::PointXYZ> );
// Generate pointcloud data for cloudA
cloudA->width = 128;
cloudA->height = 1;
cloudA->points.resize (cloudA->width * cloudA->height);
for (size_t i = 0; i < cloudA->points.size (); ++i)
{
cloudA->points[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);
cloudA->points[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);
cloudA->points[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);
}
// Add points from cloudA to octree
octree.setInputCloud (cloudA);
octree.addPointsFromInputCloud ();
// Switch octree buffers: This resets octree but keeps previous tree structure in memory.
octree.switchBuffers ();
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudB (new pcl::PointCloud<pcl::PointXYZ> );
// Generate pointcloud data for cloudB
cloudB->width = 128;
cloudB->height = 1;
cloudB->points.resize (cloudB->width * cloudB->height);
for (size_t i = 0; i < cloudB->points.size (); ++i)
{
cloudB->points[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);
cloudB->points[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);
cloudB->points[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);
}
// Add points from cloudB to octree
octree.setInputCloud (cloudB);
octree.addPointsFromInputCloud ();
std::vector<int> newPointIdxVector;
// Get vector of point indices from octree voxels which did not exist in previous buffer
octree.getPointIndicesFromNewVoxels (newPointIdxVector);
// Output points
std::cout << "Output from getPointIndicesFromNewVoxels:" << std::endl;
for (size_t i = 0; i < newPointIdxVector.size (); ++i)
std::cout << i << "# Index:" << newPointIdxVector[i]
<< " Point:" << cloudB->points[newPointIdxVector[i]].x << " "
<< cloudB->points[newPointIdxVector[i]].y << " "
<< cloudB->points[newPointIdxVector[i]].z << std::endl;
}
Documentation - Point Cloud Library (PCL)
标签:function length bind exp .cpp block inpu further multi
原文地址:https://www.cnblogs.com/ChrisCoder/p/9991537.html