标签:oid out 方向 desc code 自己 pac ons frd
Description
有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1。现在N个松鼠要走到一个松鼠家去,求走过的最短距离。
Input
第一行给出数字N,表示有多少只小松鼠。0<=N<=10^5
下面N行,每行给出x,y表示其家的坐标。
-10^9<=x,y<=10^9
Output
表示为了聚会走的路程和最小为多少。
Sample Input
6
-4 -1
-1 -2
2 -4
0 2
0 3
5 -2
Sample Output
20
如果是曼哈顿距离十分好求,我们可以分开考虑
将x排序,利用前缀后缀和,算出每个点在x轴方向到其他点的距离,将答案记录下来,再按y排序,即可统计答案
但是这题并不是曼哈顿距离,而是切比雪夫距离,怎么办?
其实有个结论,将每个点的坐标改为\((\frac{x+y}{2},\frac{x-y}{2})\)后,两点之间的曼哈顿距离等于切比雪夫距离
证明的话可以自己手推,记得考虑大小关系(其实是我懒了)
这种结论题。。。不知道结论根本不会写吧。。。至少我是没有当场推结论的水平。。。
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
struct S1{
int x,y,ID;
void insert(int _x,int _y,int _ID){x=_x,y=_y,ID=_ID;}
}A[N+10];
bool cmpx(const S1 &x,const S1 &y){return x.x<y.x;}
bool cmpy(const S1 &x,const S1 &y){return x.y<y.y;}
ll pre[N+10],suf[N+10],v[N+10];
int main(){
int n=read(); ll Ans=1e18;
for (int i=1;i<=n;i++){
int x=read(),y=read();
A[i].insert(x+y,x-y,i);
}
sort(A+1,A+1+n,cmpx);
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+A[i].x;
for (int i=n;i>=1;i--) suf[i]=suf[i+1]+A[i].x;
for (int i=1;i<=n;i++) v[A[i].ID]=(1ll*i*A[i].x-pre[i])+(suf[i]-1ll*(n-i+1)*A[i].x);
sort(A+1,A+1+n,cmpy);
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+A[i].y;
for (int i=n;i>=1;i--) suf[i]=suf[i+1]+A[i].y;
for (int i=1;i<=n;i++) Ans=min(Ans,(1ll*i*A[i].y-pre[i])+(suf[i]-1ll*(n-i+1)*A[i].y)+v[A[i].ID]);
printf("%lld\n",Ans>>1);
return 0;
}
标签:oid out 方向 desc code 自己 pac ons frd
原文地址:https://www.cnblogs.com/Wolfycz/p/10000289.html