码迷,mamicode.com
首页 > 其他好文 > 详细

生成式、判别式模型对比

时间:2018-11-23 15:25:46      阅读:224      评论:0      收藏:0      [点我收藏+]

标签:input   repr   严格   条件   regress   特定   miss   ble   param   

参考文献:On Discriminative  vs. Generative classifiers: A comparison of logistic regression and naive Bayes

 

生成式模型:model p(x,y)=p(x|y)*p(y) -> Bayes rule预测: p(y|x)=p(x,y)p(x),代表模型:Naive Bayes

判别式模型:model p(y|x),代表模型:Logistic Regression

 

参考文献中的结论:

判别式模型有更低的理论渐近误差[the generative model does indeed have a higher asymptotic error - as the number of training examples becomes large - than the discriminative model],

生成式模型理论上更快逼近渐近误差(前提是样本能够满足条件独立性和特定的分布,比如Gaussian分布)[but the generative model may also approach its asymptotic error much faster than the discriminative model - possibly with a number of training examples that is only logarithmic, rather than linear, in the number of parameters]

 

实际情况由于样本很难严格服从特定条件,使得判别式模型往往更优。

 

其他来源的观点:

- Easy to fit?

G: easy, simple counting and averaging (NB, LDA)

D: much slower, solving a convex optimization problem (LogR)

 

- Fit classes separately?

G: not have to retrain when add more classes

D: must be retrained (all parameters interact)

 

- Handle missing features easily?

G: simple, marginalizing them out (NB)

D: no principled solution, model assumes that x is given

 

- Can handle feature preprocessing?

G: hard to define model on preprocessed data

D: allow to preprocess the input, replace x with kernel(x)

 

- Can handle unlabeled training data (like semi-supervised learning)?

G: easy

D: much harder

生成式、判别式模型对比

标签:input   repr   严格   条件   regress   特定   miss   ble   param   

原文地址:https://www.cnblogs.com/yaoyaohust/p/10007481.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!