码迷,mamicode.com
首页 > 其他好文 > 详细

卷积神经网络(4)----目标检测

时间:2018-11-25 17:54:37      阅读:237      评论:0      收藏:0      [点我收藏+]

标签:bsp   实现   body   blog   自动驾驶   图片   table   案例   info   

一、分类、定位和检测

简单来说,分类、定位和检测的区别如下:

  1. 分类:是什么?

  2. 定位:在哪里?是什么?(单个目标)

  3. 检测:在哪里?分别是什么?(多个目标)

 技术分享图片  技术分享图片  技术分享图片

(1)目标分类

(2)目标定位

(3)目标检测

二、目标定位:

1)案例1:在构建自动驾驶时,需要定位出照片中的行人、汽车、摩托车和背景,即四个类别。

输出:

技术分享图片

1,2,3为要检测的行人、汽车、摩托车, Pc=1

4为背景, Pc=0

 Pc:首先第一个元素pc=1表示有要定位的物体的概率,即是有1,2,3类的概率,否则pc=0表示只有背景第4类如上图的第二个图。

bx,by,bh,bw:这四个输出元素表示定位框的中心坐标bx,by和宽高bh,bw

c1,c2,c3:3个输出元素one-hot表示是三个类别(1,2,3)中的哪一类。

当第一个元素pc=0时表示是背景,然后就不需要考虑其他输出了

损失函数:

输出向量中有8个元素:故:

if y1 =1 ,L = (y‘1-y1)2 + (y‘2-y2)2 + ……+(y‘8-y8)2

if y1 = 0,L = (y‘1-y1)2

实际使用中pc使用逻辑回归,c1,c2,c3是用softmax激活然后用对数损失函数,位置信息是使用平方误差损失函数,然后将这些损失函数相加起来得到最终的代价函数。当标签y=0时,只考虑pc即可。

三、特征点检测:

特征点检测就是第一个单元输出1,表示有这个对象(如人脸),

然后如果在人脸上定义了64个特征点(如下图所示),每个特征点用(x,y)表示,那么网络将会有1+2*68=129个单元输出。

需要注意的一点是在标注样本时,所有标签在所有图片中务必保持一致,比如说,第5个特征点表示左眼的外眼角,那么所有图片的第五个特征点都应该是这个。

技术分享图片

四、目标检测:滑动窗口、YOLO算法【更好解决边界】

https://www.cnblogs.com/ys99/p/9326637.html

传统的窗口滑动:将图片切割成很多小窗口,然后进行目标检测。直到某个小窗口检测到目标。

卷积的滑动窗口实现:在原输入补上边,在进行卷积操作,得到结果。

例如:

原输入是14*14*3,输出是1*1*4【4个分类】。传统的滑动窗口是将原输入切成4个,每个大小为12*12*3。经过重复4次卷积操作得到4个1*1*4。

卷积的滑动窗口:将原输入补成16*16*3,输出为2*2*4。只需要经过一次卷积操作就可以得到和4个1*1*4相同的结果2*2*4=2*2*(1*1*4)。

交并比函数是用来判断对象定位是否准确,IoU=(A∩B)/(A∪B),一般将交并比的值大于0.5看成是检测正确的,当然这个值可以根据实际情况来定。

 

卷积神经网络(4)----目标检测

标签:bsp   实现   body   blog   自动驾驶   图片   table   案例   info   

原文地址:https://www.cnblogs.com/Lee-yl/p/10015979.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!