码迷,mamicode.com
首页 > 其他好文 > 详细

如何正确地给图像添加高斯噪声

时间:2018-11-26 00:02:06      阅读:258      评论:0      收藏:0      [点我收藏+]

标签:src   知识点   因此   噪声   python   需要   mat   而且   sigma   

高斯噪声是一个均值为 0 方差为 \(\sigma_n^2\) 的正态分布,是一个加性噪声。但要正确地给图片添加高斯噪声,还要取决于程序中读入图片的数据格式。

如果图片的数据格式为 uint8,也即数据的范围为 [0, 255],那么直接生成对应方差的噪声,然后加到图片上去。

# clean_image uint8 (128, 128)
noise_image = clean_image + np.random.rand(128, 128) * sigma

此处 np.random.rand(128, 128) 生成一个均值为 0 方差为 1 的正态分布,然后我们乘以 \(\sigma_n\),将方差调整到 \(\sigma_n^2\),再加到图片上即可。

如果图片的数据格式为浮点型,而且数据的范围为 [0, 1],那么我们需要对噪声的方差做一些调整,真正加到图片上的噪声方差应该为 \(\sigma_{real}^2 = \frac{\sigma_n^2}{255^2}\),也即 \(\sigma_{real} = \frac{\sigma_n}{255}\)

# clean_image float32 (128, 128)
noise_image = clean_image + np.random.rand(128, 128) * sigma / 255

此处 np.random.rand(128, 128) 生成一个均值为 0 方差为 1 的正态分布,然后我们乘以 \(\sigma_n / 255\),将真实方差调整到 \(\sigma_n^2\),再加到图片上即可。

在 MATLAB 中,imnoise 会对图片进行处理,将像素值缩放到 [0, 1] 之间,因此我们在传入方差的时候也必须要先进行调整。

noise_image = imnoise(clean_image, ‘gaussian‘, 0, sigma^2/255^2)

有时候,我们真的需要对知识抱有敬畏之心,任何一个小的知识点都没有那么简单。但如果你在这些小的知识点上犯了小错误,后果却是不可想象的。千里之堤毁于蚁穴,与君共勉!

获取更多精彩,请关注「seniusen」!
技术分享图片

如何正确地给图像添加高斯噪声

标签:src   知识点   因此   噪声   python   需要   mat   而且   sigma   

原文地址:https://www.cnblogs.com/seniusen/p/10017559.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!