标签:++ 合数 ceo int std namespace \n printf const
首先根据生成函数的套路,这个可以写成:
\[
\prod_{i=1}^{n}(1+x^1+x^2+...+x^{c[i]})
\]
然后化简
\[
=\prod_{i=1}^{n}\frac{1-x^{c[i]+1}}{1-x}
\]
\[
=\prod_{i=1}^{n}\frac{1}{1-x}*(1-x^{c[i]+1})
\]
\[
=(1+x^1+x^2+...)^n*\prod_{i=1}^{n}(1-x^{c[i]+1})
\]
位数过多所以只考虑有常数项的位,后面那个式子可以dfs,然后对于得到的有常数项a的一位b,需要乘\( (1+x^1+x^2+...)^n \),然后这个式子展开后每一项的常数项是\( C_{n+i-1}^{n-1} \),也就是对于这一位方案数(常数项)的统计就是\( k*(C_{n+0-1}^{n-1}+C_{n+1-1}^{n-1}+...+C_{n+(m-b)-1}^{n-1}) \)这里无穷项变有穷是因为m的个数限制,然后后面那个组合数式子是杨辉三角的一列,找规律发现化简可得 \( C_{n+(m-b)}^{n} \),这里mod不是质数所以逆元不行,但是注意到n-m很小,所以先把n!和(n-m)!化简最后再除以m!即可
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=15,mod=2004;
int n,l,r,c[N],ans;
long long fac=1;
int C(int n,int m)
{
if(n<m)
return 0;
long long ans=1,p=fac*mod;
for(int i=n-m+1;i<=n;i++)
ans=1ll*i%p*ans%p;
return (ans/fac)%mod;
}
int dfs(int w,int a,int b,int m)
{
if(w==n+1)
return a*C(n+m-b,n)%mod;
return (dfs(w+1,a,b,m)+dfs(w+1,-a,b+c[w]+1,m))%mod;
}
int main()
{
scanf("%d%d%d",&n,&l,&r);
for(int i=1;i<=n;i++)
scanf("%d",&c[i]),fac*=i;
printf("%d\n",((dfs(1,1,0,r)-dfs(1,1,0,l-1))%mod+mod)%mod);
return 0;
}
bzoj 3027: [Ceoi2004]Sweet【生成函数+组合数学】
标签:++ 合数 ceo int std namespace \n printf const
原文地址:https://www.cnblogs.com/lokiii/p/10017548.html