码迷,mamicode.com
首页 > 其他好文 > 详细

tensorflow-非线性回归(2)

时间:2018-11-26 00:23:09      阅读:188      评论:0      收藏:0      [点我收藏+]

标签:ida   scope   min   std   tde   单样本   lob   diff   dom   

#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Sep 15 10:54:53 2018 @author: myhaspl @email:myhaspl@myhaspl.com 非线性回归y=a*x^3+b*x^3+c 单样本 """ import tensorflow as tf import numpy as np trainCount=350 g=tf.Graph() with g.as_default(): def getWeights(shape,wname): weights=tf.Variable(tf.truncated_normal(shape,stddev=0.1),name=wname) return weights def getBias(shape,bname): biases=tf.Variable(tf.constant(0.1,shape=shape),name=bname) return biases def inference(x): result=tf.add(tf.matmul(tf.pow(x,3),w),b) return result def loss(x,y): yp=inference(x) return tf.multiply(tf.reduce_sum(tf.squared_difference(y,yp)),0.5) def train(learningRate,trainLoss,trainStep): trainOp=tf.train.GradientDescentOptimizer(learningRate).minimize(trainLoss,global_step=trainStep) return trainOp def evaluate(x): return inference(x) def accuracy(x,y): yp=inference(x) return tf.subtract(1.0,tf.reduce_mean(tf.divide(tf.abs(yp-y),y))) def inputs(n): sampleX=np.array(np.random.rand(n,2),dtype=np.float32) sampleb1=5. samplew=np.array([0.5,0.9],dtype=np.float32) sampleY=np.matmul(pow(sampleX,3),samplew)+sampleb1 return (sampleX,sampleY) with tf.name_scope("variables"): w=getWeights([2,1],"w") b=getBias((),"b") trainStep=tf.Variable(0,dtype=tf.int32,name="step") with tf.name_scope("inputDatas"): x=tf.placeholder(dtype=tf.float32,shape=[None,2],name="input_x") y=tf.placeholder(dtype=tf.float32,shape=[None],name="input_y") init=tf.global_variables_initializer() with tf.Session(graph=g) as sess: sess.run(init)

    sampleX,sampleY=inputs(100)
    sampleCount=sampleX.shape[0]

    testX,testY=inputs(5)
    testCount=testX.shape[0]

    trainLoss=loss(x,y)

    accuracyOp=accuracy(sampleX,sampleY)
    inputX=sampleX
    inputY=sampleY
    print inputX.shape
    print inputY.shape
    trainOp=train(0.25,trainLoss,trainStep)
    while trainStep.eval()<trainCount: 
         for i in xrange(sampleCount):
            inputX=np.array([sampleX[i]],dtype=np.float32)
            inputY=np.array([sampleY[i]],dtype=np.float32)
            sess.run(trainOp,feed_dict={x:inputX,y:inputY})
            nowStep=sess.run(trainStep)
            if nowStep%50==0:
                validate_acc=sess.run(accuracyOp)
                print "%d次后=>正确率%g"%(nowStep,validate_acc)
            if nowStep>trainCount:
                break
    print "w:",sess.run(w)  
    print "b:",sess.run(b)  
    print "测试样本正确率%g"%sess.run(accuracy(testX,testY))

(100, 2)
(100,)
50次后=>正确率0.941076
100次后=>正确率0.942413
150次后=>正确率0.943086
200次后=>正确率0.943109
250次后=>正确率0.943165
300次后=>正确率0.943153
350次后=>正确率0.943156
w: [[0.5005716]
[0.8993188]]
b: 5.000005
测试样本正确率0.950526

tensorflow-非线性回归(2)

标签:ida   scope   min   std   tde   单样本   lob   diff   dom   

原文地址:http://blog.51cto.com/13959448/2321784

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!