标签:des style color io os ar java for strong
题目中文的不解释啊。。。
需要注意的就是:离散数学中,有向图的邻接矩阵A表示所有点之间路径长度为1的路径数量,A^n则表示路径长度为n的路径数量,故需要求某两点在(A^t1)~(A^t2)的路径数量之和。
6 1 2 1 3 2 3 3 2 3 1 2 1 3 1 2 0 0 1 2 1 100 4 8 3 50
0 1506 0
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)?0:x)
#define mod 2008
const int maxn = 210;
using namespace std;
struct matrix
{
int f[31][31];
};
matrix p[10001];
map<int, int>mp;
matrix mul(matrix a, matrix b, int n)
{
matrix c;
memset(c.f, 0, sizeof(c.f));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j];
c.f[i][j] %= mod;
}
}
return c;
}
matrix pow_mod(matrix a, int b, int n)
{
matrix s;
memset(s.f, 0 , sizeof(s.f));
for(int i = 0; i < n; i++) s.f[i][i] = 1;
while(b)
{
if(b&1) s = mul(s, a, n);
a = mul(a, a, n);
b >>= 1;
}
return s;
}
matrix Add(matrix a,matrix b, int n)
{
matrix c;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
c.f[i][j] = a.f[i][j]+b.f[i][j];
c.f[i][j] %= mod;
}
}
return c;
}
int main()
{
int n, m;
while(scanf("%d",&n)!=EOF)
{
int u, v;
int ans = 0;
mp.clear();
memset(p[0].f, 0, sizeof(p[0].f));
for(int i = 0; i < n; i++)
{
scanf("%d %d",&u, &v);
if(mp.find(u) == mp.end()) mp[u] = ans++;
if(mp.find(v) == mp.end()) mp[v] = ans++;
p[0].f[mp[u]][mp[v]] ++;
}
for(int i = 1; i < 10001; i++) p[i] = mul(p[i-1], p[0], ans);
scanf("%d",&m);
int t1, t2, v1, v2;
while(m--)
{
scanf("%d %d %d %d",&v1, &v2, &t1, &t2);
if(mp.find(v1) == mp.end() || mp.find(v2) == mp.end() || t1 == 0 && t2 == 0)
{
puts("0");
continue;
}
int sum = 0;
for(int i = t1-1; i < t2; i++) sum += p[i].f[mp[v1]][mp[v2]]%mod;
printf("%d\n",sum%mod);
///cout<<(sum%mod)<<endl;
}
}
return 0;
}标签:des style color io os ar java for strong
原文地址:http://blog.csdn.net/xu12110501127/article/details/40041459