标签:des style color io os ar java for strong
题目中文的不解释啊。。。
需要注意的就是:离散数学中,有向图的邻接矩阵A表示所有点之间路径长度为1的路径数量,A^n则表示路径长度为n的路径数量,故需要求某两点在(A^t1)~(A^t2)的路径数量之和。
6 1 2 1 3 2 3 3 2 3 1 2 1 3 1 2 0 0 1 2 1 100 4 8 3 50
0 1506 0
#include <algorithm> #include <iostream> #include <stdlib.h> #include <string.h> #include <iomanip> #include <stdio.h> #include <string> #include <queue> #include <cmath> #include <stack> #include <map> #include <set> #define eps 1e-10 ///#define M 1000100 #define LL __int64 ///#define LL long long ///#define INF 0x7ffffff #define INF 0x3f3f3f3f #define PI 3.1415926535898 #define zero(x) ((fabs(x)<eps)?0:x) #define mod 2008 const int maxn = 210; using namespace std; struct matrix { int f[31][31]; }; matrix p[10001]; map<int, int>mp; matrix mul(matrix a, matrix b, int n) { matrix c; memset(c.f, 0, sizeof(c.f)); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j]; c.f[i][j] %= mod; } } return c; } matrix pow_mod(matrix a, int b, int n) { matrix s; memset(s.f, 0 , sizeof(s.f)); for(int i = 0; i < n; i++) s.f[i][i] = 1; while(b) { if(b&1) s = mul(s, a, n); a = mul(a, a, n); b >>= 1; } return s; } matrix Add(matrix a,matrix b, int n) { matrix c; for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { c.f[i][j] = a.f[i][j]+b.f[i][j]; c.f[i][j] %= mod; } } return c; } int main() { int n, m; while(scanf("%d",&n)!=EOF) { int u, v; int ans = 0; mp.clear(); memset(p[0].f, 0, sizeof(p[0].f)); for(int i = 0; i < n; i++) { scanf("%d %d",&u, &v); if(mp.find(u) == mp.end()) mp[u] = ans++; if(mp.find(v) == mp.end()) mp[v] = ans++; p[0].f[mp[u]][mp[v]] ++; } for(int i = 1; i < 10001; i++) p[i] = mul(p[i-1], p[0], ans); scanf("%d",&m); int t1, t2, v1, v2; while(m--) { scanf("%d %d %d %d",&v1, &v2, &t1, &t2); if(mp.find(v1) == mp.end() || mp.find(v2) == mp.end() || t1 == 0 && t2 == 0) { puts("0"); continue; } int sum = 0; for(int i = t1-1; i < t2; i++) sum += p[i].f[mp[v1]][mp[v2]]%mod; printf("%d\n",sum%mod); ///cout<<(sum%mod)<<endl; } } return 0; }
标签:des style color io os ar java for strong
原文地址:http://blog.csdn.net/xu12110501127/article/details/40041459