标签:style batch 0.00 分享 ini show lse tle nump
https://study.163.com/course/courseMain.htm?courseId=1004937015
1 # -*- coding: utf-8 -*- 2 3 import tensorflow as tf 4 import pandas as pd 5 import numpy as np 6 7 data = pd.read_csv(‘train.csv‘) 8 data = data[[‘Survived‘, ‘Pclass‘, ‘Sex‘, ‘Age‘, ‘SibSp‘, ‘Parch‘, ‘Fare‘, ‘Cabin‘, ‘Embarked‘]] 9 10 data[‘Age‘] = data[‘Age‘].fillna(data[‘Age‘].mean()) 11 data[‘Cabin‘] = pd.factorize(data[‘Cabin‘])[0] 12 data.fillna(0, inplace=True) 13 data[‘Sex‘] = [1 if x==‘male‘ else 0 for x in data[‘Sex‘]] 14 data[‘p1‘] = np.array(data[‘Pclass‘]==1).astype(np.int32) 15 data[‘p2‘] = np.array(data[‘Pclass‘]==2).astype(np.int32) 16 data[‘p3‘] = np.array(data[‘Pclass‘]==3).astype(np.int32) 17 del data[‘Pclass‘] 18 data[‘e1‘] = np.array(data[‘Embarked‘]==‘S‘).astype(np.int32) 19 data[‘e2‘] = np.array(data[‘Embarked‘]==‘C‘).astype(np.int32) 20 data[‘e3‘] = np.array(data[‘Embarked‘]==‘Q‘).astype(np.int32) 21 del data[‘Embarked‘] 22 23 data_train = data[[ ‘Sex‘, ‘Age‘, ‘SibSp‘, ‘Parch‘, ‘Fare‘, ‘Cabin‘, ‘p1‘, ‘p2‘, ‘p3‘, ‘e1‘, ‘e2‘, ‘e3‘]] 24 data_target = data[‘Survived‘].values.reshape(len(data), 1) 25 26 x = tf.placeholder("float", shape=[None, 12]) 27 y = tf.placeholder("float", shape=[None, 1]) 28 29 weight = tf.Variable(tf.random_normal([12, 1])) 30 bias = tf.Variable(tf.random_normal([1])) 31 output = tf.matmul(x, weight) + bias 32 pred = tf.cast(tf.sigmoid(output) > 0.5, tf.float32) 33 34 loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)) 35 train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss) 36 accurary = tf.reduce_mean(tf.cast(tf.equal(pred, y), tf.float32)) 37 38 data_test = pd.read_csv(‘test.csv‘) 39 data_test = data_test[[‘Pclass‘, ‘Sex‘, ‘Age‘, ‘SibSp‘, ‘Parch‘, ‘Fare‘, ‘Cabin‘, ‘Embarked‘]] 40 data_test[‘Age‘] = data_test[‘Age‘].fillna(data_test[‘Age‘].mean()) 41 data_test[‘Cabin‘] = pd.factorize(data_test[‘Cabin‘])[0] 42 data_test.fillna(0, inplace=True) 43 data_test[‘Sex‘] = [1 if x==‘male‘ else 0 for x in data_test[‘Sex‘]] 44 data_test[‘p1‘] = np.array(data_test[‘Pclass‘]==1).astype(np.int32) 45 data_test[‘p2‘] = np.array(data_test[‘Pclass‘]==2).astype(np.int32) 46 data_test[‘p3‘] = np.array(data_test[‘Pclass‘]==3).astype(np.int32) 47 del data_test[‘Pclass‘] 48 data_test[‘e1‘] = np.array(data_test[‘Embarked‘]==‘S‘).astype(np.int32) 49 data_test[‘e2‘] = np.array(data_test[‘Embarked‘]==‘C‘).astype(np.int32) 50 data_test[‘e3‘] = np.array(data_test[‘Embarked‘]==‘Q‘).astype(np.int32) 51 del data_test[‘Embarked‘] 52 53 test_label = pd.read_csv(‘gender_submission.csv‘) 54 test_label = np.reshape(test_label[‘Survived‘].values.astype(np.float32), (418,1)) 55 56 sess = tf.Session() 57 sess.run(tf.global_variables_initializer()) 58 loss_train = [] 59 train_acc = [] 60 test_acc = [] 61 62 data_train = data_train.values 63 for i in range(25000): 64 index = np.random.permutation(len(data_target)) 65 data_train = data_train[index] 66 data_target = data_target[index] 67 for n in range(len(data_target)//100 + 1): 68 batch_xs = data_train[n*100:n*100+100] 69 batch_ys = data_target[n*100:n*100+100] 70 sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys}) 71 72 if i%1000 == 0: 73 loss_temp = sess.run(loss, feed_dict={x:batch_xs, y:batch_ys}) 74 loss_train.append(loss_temp) 75 train_acc_temp = sess.run(accurary, feed_dict={x:batch_xs, y:batch_ys}) 76 train_acc.append(train_acc_temp) 77 test_acc_temp = sess.run(accurary, feed_dict={x:data_test, y:test_label}) 78 test_acc.append(test_acc_temp) 79 print(loss_temp,train_acc_temp,test_acc_temp) 80 81 import matplotlib.pyplot as plt 82 83 plt.plot(loss_train, ‘k-‘) 84 plt.title(‘train loss‘) 85 plt.show() 86 87 plt.plot(train_acc, ‘b-‘, label=‘train_acc‘) 88 plt.plot(test_acc, ‘r--‘, label=‘test_acc‘) 89 plt.title(‘train and test accuracy‘) 90 plt.legend() 91 plt.show()
《Tensorflow基础泰坦尼克获救预测》-- 网易云课堂
标签:style batch 0.00 分享 ini show lse tle nump
原文地址:https://www.cnblogs.com/LearnFromNow/p/10048167.html