标签:bsp i++ == write cost 需要 def man +=
因为直接利用费用流可能会导致经过相同的点,所以利用拆点法
除了首尾结点之外其他的每一个结点都拆成两个结点,并且两个结点之间连一条容量为1,费用为0的边,这样做的理由也很简单
一旦一个节点用过之后,下次再经过这个节点之后再也没有办法扩展到其他节点了
#include<iostream> #include<cmath> #include<cstdio> #include<cstdlib> #include<cstring> #include<iomanip> #include<assert.h> #include<ctime> #include<vector> #include<list> #include<map> #include<set> #include<sstream> #include<stack> #include<queue> #include<string> #include<bitset> #include<algorithm> using namespace std; #define me(s) memset(s,0,sizeof(s)) #define pf printf #define sf scanf #define Di(x) int x;scanf("%d",&x) #define in(x) inp(x) #define in2(x,y) inp(x),inp(y) #define in3(x,y,z) inp(x),inp(y),inp(z) #define ins(x) scanf("%s",x) #define ind(x) scanf("%lf",&x) #define IO ios_base::sync_with_stdio(0);cin.tie(0) #define READ freopen("C:/Users/ASUS/Desktop/in.txt","r",stdin) #define WRITE freopen("C:/Users/ASUS/Desktop/out.txt","w",stdout) template<class T> void inp(T &x) {//读入优化 char c = getchar(); x = 0; for (; (c < 48 || c>57); c = getchar()); for (; c > 47 && c < 58; c = getchar()) { x = (x << 1) + (x << 3) + c - 48; } } typedef pair <int, int> pii; typedef long long ll; typedef unsigned long long ull; const int inf = 0x3f3f3f3f; const int mod = 1e9 + 7; const double pi = acos(-1.0); const double eps = 1e-15; const int maxn=2000+5; struct Edge{ int from,to,cap,flow,cost; Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){} }; struct MCMF { int n, m; vector<Edge> edges; vector<int> G[maxn]; int inq[maxn]; // 是否在队列中 int d[maxn]; // Bellman-Ford int p[maxn]; // 上一条弧 int a[maxn]; // 可改进量 void init(int n) { this->n = n; for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back(Edge(from, to, cap, 0, cost)); edges.push_back(Edge(to, from, 0, 0, -cost)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BellmanFord(int s, int t, int flow_limit, int& flow, int& cost) { for(int i = 0; i < n; i++) d[i] = inf; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = inf; queue<int> Q; Q.push(s); while(!Q.empty()) { int u = Q.front(); Q.pop(); inq[u] = 0; for(int i = 0; i < G[u].size(); i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == inf) return false; if(flow + a[t] > flow_limit) a[t] = flow_limit - flow; flow += a[t]; cost += d[t] * a[t]; for(int u = t; u != s; u = edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } return true; } // 需要保证初始网络中没有负权圈 int MincostMaxFlow(int s, int t, int flow_limit, int& cost) { int flow = 0; cost = 0; while(flow < flow_limit && BellmanFord(s, t, flow_limit, flow, cost)); return flow; } }; MCMF g; int n,m; int main(){ //READ; //WRITE; //clock_t startTime,endTime; //startTime = clock();//计时开始 while(sf("%d%d",&n,&m)==2){ g.init(2*n-2); for(int i=1;i<n-1;i++) g.AddEdge(i,i+n-1,1,0); int u,v,c; while(m--){ in3(u,v,c); if(u!=1&&u!=n) u+=n-2; else u--; v--; g.AddEdge(u,v,1,c); } int ans=0; g.MincostMaxFlow(0,n-1,2,ans); cout<<ans<<endl; } //endTime = clock();//计时结束 //cout << "The run time is: " <<(double)(endTime - startTime) / CLOCKS_PER_SEC << "s" << endl; //system("pause"); }
标签:bsp i++ == write cost 需要 def man +=
原文地址:https://www.cnblogs.com/033000-/p/10052398.html