标签:src char name 数据 hint inpu include 整数 \n
给出N,M,K.求
输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。
如题
1 2
3 3
20
1<=N,M,K<=5000000,1<=T<=2000
莫比乌斯反演,推下式子:
\[
\begin{align}
ans&=\sum _{d=1}^{min(n,m)}d^k \sum _{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum _{j=1}^{\lfloor\frac{m}{d}\rfloor} [gcd(i,j)=1]\&=\sum _{d=1}^{min(n,m)}d^k \sum _{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum _{j=1}^{\lfloor\frac{m}{d}\rfloor} \sum _{d^\prime|i\&d^\prime|j} \mu(d^\prime)\&=\sum _{d=1}^{min(n,m)}d^k \sum _{d^\prime} \mu(d^\prime)\lfloor\frac{n}{dd^\prime}\rfloor \lfloor\frac{m}{dd^\prime}\rfloor \&=\sum _{d=1}^{min(n,m)}d^k \sum _{d|T} \mu(\frac{T}{d})\lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor \&=\sum _{T} \lfloor\frac{n}{T}\rfloor \lfloor\frac{m}{T}\rfloor \sum _{d|T}d^k \mu(\frac{T}{d})\\end {align}
\]
设\(f\)为:
\[
f(n)=\sum_{d|T}d^k\mu(\frac{T}{d})
\]
然后我们可以线筛出\(\mu\)然后大力算\(f\)然后数论分块,由于调和级数,复杂度为\(O(nlog(n)+q\sqrt{n})\)。
然而交一发T掉了,,,可以考虑线筛出\(f\),考虑质数\(p\),对于\(f(n*p)\),展开得:
\[
f(n*p)=\sum_{d|T}d^k\mu(\frac{T*p}{d})+\sum_{d|T}(d*p)^k\mu(\frac{T}{d})
\]
然后若\(p|n\),可得\(f(n*p)=f(n)*p^k\),否则可得\(f(n*p)=f(n)*(p^k-1)\)。
然后线筛即可,复杂度\(O(n+q\sqrt{n})\)。
暴力算\(f\)的代码(TLE):
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int maxn = 5e6+1;
const int mod = 1e9+7;
int pri[maxn],vis[maxn],mu[maxn],f[maxn],tot,n,m,k;
int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
return res;
}
void sieve() {
mu[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(!(i%pri[j])) {mu[i*pri[j]]=0;break;}
mu[i*pri[j]]=-mu[i];
}
}
for(int d=1;d<=n;d++) {
int res=qpow(d,k);
for(int i=1;i*d<=n;i++) (f[i*d]+=res*mu[i])%=mod;
}
for(int i=1;i<=n;i++) f[i]=(f[i]+f[i-1])%mod;
}
signed main() {
int t;n=maxn-1;read(t),read(k);sieve();
while(t--) {
read(n),read(m);
int T=1,ans=0;
while(T<=n&&T<=m) {
int pre=T;T=min(n/(n/T),m/(m/T));
ans=(ans+(n/T)*(m/T)%mod*(f[T]-f[pre-1])%mod)%mod;
T++;
}
write((ans%mod+mod)%mod);
}
return 0;
}
线筛\(f\):
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int maxn = 5e6+1;
const int mod = 1e9+7;
int pri[maxn],vis[maxn],mu[maxn],f[maxn],tot,n,m,k,p[maxn];
int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
return res;
}
void sieve() {
f[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) pri[++tot]=i,p[tot]=qpow(i,k),f[i]=p[tot]-1;
for(int j=1;j<=tot&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(!(i%pri[j])) {f[i*pri[j]]=f[i]*p[j]%mod;break;}
f[i*pri[j]]=f[i]*(p[j]-1)%mod;
}
}for(int i=1;i<=n;i++) f[i]=(f[i]+f[i-1])%mod;
}
signed main() {
int t;n=maxn-1;read(t),read(k);
//int PRE=clock();
sieve();
//cerr << (double) (clock()-PRE)/CLOCKS_PER_SEC << endl;
while(t--) {
read(n),read(m);
int T=1,ans=0;
while(T<=n&&T<=m) {
int pre=T;T=min(n/(n/T),m/(m/T));
ans=(ans+(n/T)*(m/T)%mod*(f[T]-f[pre-1])%mod)%mod;
T++;
}
write((ans%mod+mod)%mod);
}
return 0;
}
注意下bzoj不能用clock函数,否则狂RE不止,别问我怎么知道的QAQ
标签:src char name 数据 hint inpu include 整数 \n
原文地址:https://www.cnblogs.com/hbyer/p/10054465.html