标签:距离 ros int set break length 初始化 func man
求最短路:
1.bellman-ford:
%求s到各点的最短距离 function Dist = Bellman_Ford(s) load cityJuli; for i = 1:154 Dist(i) = inf; end Dist(s) = 0; flag = 1; for j = 1:154 %154个城市 flag = 1; for i = 1 : 248 %题目给248组数据,遍历每一条边 %用所给数据松弛 if Dist(cityJuli(i,1)) > Dist(cityJuli(i,2)) + cityJuli(i,3) %如果这条边的终点的dist[]值小于起始点的dist[]值加上这条边的权值,则更新dist Dist(cityJuli(i,1)) = Dist(cityJuli(i,2)) + cityJuli(i,3); flag = 0; end if Dist(cityJuli(i,2)) > Dist(cityJuli(i,1)) + cityJuli(i,3) %由于是无向图,故要反向松弛一遍 Dist(cityJuli(i,2)) = Dist(cityJuli(i,1)) + cityJuli(i,3); flag = 0; end end if(flag == 1) break; end end end %{ void bellman(int s){ memset(d, MAX, sizeof(d)); d[s] = 0; //必须初始化这个 int flag = 1; for(int k = 0; k < n - 1; k++){ flag = 1; for(int i = 0; i < m; i++){ //遍历每一条边 if(d[u[i]] > d[v[i]] + w[i]){//如果这条边的终点的d[]值小于起始点的d[]值加上这条边的权值,则更新d d[u[i]] = d[v[i]] + w[i]; flag = 0; } } if(flag){ break; } } } %}
2.地杰斯特拉:
function [ distance, path] = Dijk( W,st,e ) % W 权值矩阵 st 搜索的起点 e 搜索的终点 n=length(W);%节点数 D = W(st,:); for i = 1:n visit(i) = 1; end visit(st)=0; parent = zeros(1,n);%记录每个节点的上一个节点 path =[]; for i=1:n-1 temp = []; %从起点出发,找最短距离的下一个点,每次不会重复原来的轨迹,设置visit判断节点是否访问 for j=1:n if visit(j) temp =[temp D(j)]; else temp =[temp inf]; end end [value,index] = min(temp); visit(index) = 0; %更新 如果经过index节点,从起点到每个节点的路径长度更小,则更新,记录前趋节点,方便后面回溯循迹 for k=1:n if D(k)>D(index)+W(index,k) D(k) = D(index)+W(index,k); parent(k) = index; end end end distance = D(e);%最短距离 %回溯法 从尾部往前寻找搜索路径 t = e; while t~=st && t>0 path =[t,path]; p=parent(t);t=p; end path =[st,path];%最短路径 end
标签:距离 ros int set break length 初始化 func man
原文地址:https://www.cnblogs.com/zhumengdexiaobai/p/10057839.html