码迷,mamicode.com
首页 > 其他好文 > 详细

华为云AI-深度学习糖尿病预测

时间:2018-12-04 20:02:02      阅读:210      评论:0      收藏:0      [点我收藏+]

标签:key   1.4   utc   代码   lse   sample   截断   统一   regular   

#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Sep 15 10:54:53 2018 @author: myhaspl @email:myhaspl@myhaspl.com 糖尿病预测(多层) csv格式:怀孕次数、葡萄糖、血压、皮肤厚度,胰岛素,bmi,糖尿病血统函数,年龄,结果 """ import tensorflow as tf import os trainCount=10000 inputNodeCount=8 validateCount=50 sampleCount=200 testCount=10 outputNodeCount=1 g=tf.Graph() with g.as_default(): def getWeights(shape,wname): weights=tf.Variable(tf.truncated_normal(shape,stddev=0.1),name=wname) return weights def getBias(shape,bname): biases=tf.Variable(tf.constant(0.1,shape=shape),name=bname) return biases def inferenceInput(x): layer1=tf.nn.relu(tf.add(tf.matmul(x,w1),b1)) result=tf.add(tf.matmul(layer1,w2),b2) return result def inference(x): yp=inferenceInput(x) return tf.sigmoid(yp) def loss(): yp=inferenceInput(x) return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y,logits=yp)) def train(learningRate,trainLoss,trainStep): trainOp=tf.train.AdamOptimizer(learningRate).minimize(trainLoss,global_step=trainStep) return trainOp def evaluate(x): return tf.cast(inference(x)>0.5,tf.float32) def accuracy(x,y,count): yp=evaluate(x) return tf.reduce_mean(tf.cast(tf.equal(yp,y),tf.float32)) def inputFromFile(fileName,skipLines=1): #生成文件名队列 fileNameQueue=tf.train.string_input_producer([fileName]) #生成记录键值对 reader=tf.TextLineReader(skip_header_lines=skipLines) key,value=reader.read(fileNameQueue) return value def getTestData(fileName,skipLines=1,n=10): #生成文件名队列 testFileNameQueue=tf.train.string_input_producer([fileName]) #生成记录键值对 testReader=tf.TextLineReader(skip_header_lines=skipLines) testKey,testValue=testReader.read(testFileNameQueue) testRecordDefaults=[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]] testDecoded=tf.decode_csv(testValue,record_defaults=testRecordDefaults) pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome=tf.train.shuffle_batch(testDecoded,batch_size=n,capacity=1000,min_after_dequeue=1) testFeatures=tf.transpose(tf.stack([pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age])) testY=tf.transpose([outcome]) return (testFeatures,testY) def getNextBatch(n,values): recordDefaults=[[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.],[1.]] decoded=tf.decode_csv(values,record_defaults=recordDefaults) pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age,outcome=tf.train.shuffle_batch(decoded,batch_size=n,capacity=1000,min_after_dequeue=1) features=tf.transpose(tf.stack([pregnancies,glucose,bloodPressure,skinThickness,insulin,bmi,diabetespedigreefunction,age])) y=tf.transpose([outcome]) return (features,y) with tf.name_scope("inputSample"): samples=inputFromFile("s3://myhaspl/tf_learn/diabetes.csv",1) inputDs=getNextBatch(sampleCount,samples) with tf.name_scope("validateSamples"): validateInputs=getNextBatch(validateCount,samples) with tf.name_scope("testSamples"): testInputs=getTestData("s3://myhaspl/tf_learn/diabetes_test.csv") with tf.name_scope("inputDatas"): x=tf.placeholder(dtype=tf.float32,shape=[None,inputNodeCount],name="input_x") y=tf.placeholder(dtype=tf.float32,shape=[None,outputNodeCount],name="input_y") with tf.name_scope("Variable"): w1=getWeights([inputNodeCount,12],"w1") b1=getBias((),"b1") w2=getWeights([12,outputNodeCount],"w2") b2=getBias((),"b2") trainStep=tf.Variable(0,dtype=tf.int32,name="tcount",trainable=False) with tf.name_scope("train"): trainLoss=loss() trainOp=train(0.005,trainLoss,trainStep) init=tf.global_variables_initializer() with tf.Session(graph=g) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) while trainStep.eval()<trainCount: sampleX,sampleY=sess.run(inputDs) sess.run(trainOp,feed_dict={x:sampleX,y:sampleY}) nowStep=sess.run(trainStep) if nowStep%500==0: validate_acc=sess.run(accuracy(sampleX,sampleY,sampleCount)) print "%d次后=>正确率%g"%(nowStep,validate_acc) if nowStep>trainCount: break testInputX,testInputY=sess.run(testInputs) print "测试样本正确率%g"%sess.run(accuracy(testInputX,testInputY,testCount)) print testInputX,testInputY print sess.run(evaluate(testInputX)) coord.request_stop() coord.join(threads)
500次后=>正确率0.67
1000次后=>正确率0.75
1500次后=>正确率0.81
2000次后=>正确率0.75
2500次后=>正确率0.775
3000次后=>正确率0.765
3500次后=>正确率0.84
4000次后=>正确率0.85
4500次后=>正确率0.77
5000次后=>正确率0.78
5500次后=>正确率0.775
6000次后=>正确率0.835
6500次后=>正确率0.84
7000次后=>正确率0.785
7500次后=>正确率0.805
8000次后=>正确率0.765
8500次后=>正确率0.83
9000次后=>正确率0.835
9500次后=>正确率0.78
10000次后=>正确率0.775
测试样本正确率0.7
[[1.00e+01 1.01e+02 7.60e+01 4.80e+01 1.80e+02 3.29e+01 1.71e-01 6.30e+01]
 [3.00e+00 7.80e+01 5.00e+01 3.20e+01 8.80e+01 3.10e+01 2.48e-01 2.60e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]
 [2.00e+00 8.80e+01 5.80e+01 2.60e+01 1.60e+01 2.84e+01 7.66e-01 2.20e+01]
 [1.00e+01 1.01e+02 7.60e+01 4.80e+01 1.80e+02 3.29e+01 1.71e-01 6.30e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]
 [1.00e+00 8.90e+01 6.60e+01 2.30e+01 9.40e+01 2.81e+01 1.67e-01 2.10e+01]
 [6.00e+00 1.48e+02 7.20e+01 3.50e+01 0.00e+00 3.36e+01 6.27e-01 5.00e+01]
 [1.00e+00 9.30e+01 7.00e+01 3.10e+01 0.00e+00 3.04e+01 3.15e-01 2.30e+01]
 [2.00e+00 1.22e+02 7.00e+01 2.70e+01 0.00e+00 3.68e+01 3.40e-01 2.70e+01]] [[0.]
 [1.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]]
[[1.]
 [0.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]
 [1.]
 [0.]
 [0.]]

感觉华为云中提供的深度学习服务,就是给你提供一个强大的服务器,然后,你自己编写代码。可能还提供了一些更多的功能
技术分享图片
另外,提供了一个训练用户自定义数据的代码
补充一个概念:
MoXing是华为云深度学习服务提供的网络模型开发API。相对于TensorFlow和MXNet等原生API而言,MoXing API让模型的代码编写更加简单,而且能够自动获取高性能的分布式执行能力。

MoXing允许用户只需要关心数据输入(input_fn)和模型构建(model_fn)的代码,就可以实现任意模型在多GPU和分布式下的高性能运行。MoXing-TensorFlow支持原生TensorFlow、Keras、slim等API,帮助构建图像分类、物体检测、生成对抗、自然语言处理和OCR等多种模型。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import moxing.tensorflow as mox
slim = tf.contrib.slim

# 用TensorFlow原生的方式定义超参
tf.flags.DEFINE_string(‘data_url‘, None, ‘‘)
tf.flags.DEFINE_string(‘train_dir‘, None, ‘‘)

flags = tf.flags.FLAGS

def train_my_model():

  def input_fn(run_mode, **kwargs):
    # 从TFRecord中获取输入数据集
    keys_to_features = {
      ‘image/encoded‘: tf.FixedLenFeature((), tf.string, default_value=‘‘),
      ‘image/format‘: tf.FixedLenFeature((), tf.string, default_value=‘raw‘),
      ‘image/class/label‘: tf.FixedLenFeature(
        [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
    }

    items_to_handlers = {
      ‘image‘: slim.tfexample_decoder.Image(shape=[28, 28, 1], channels=1),
      ‘label‘: slim.tfexample_decoder.Tensor(‘image/class/label‘, shape=[]),
    }
    # 数据集中包含60000张训练集图像(数据文件名为mnist_train.tfrecord)
    # 以及10000张验证集图像(数据文件名为mnist_test.tfrecord)
    dataset = mox.get_tfrecord(dataset_dir=flags.data_url,
                               file_pattern=‘mnist_train.tfrecord‘ if run_mode == mox.ModeKeys.TRAIN else ‘mnist_test.tfrecord‘,
                               num_samples=60000 if run_mode == mox.ModeKeys.TRAIN else 10000,
                               keys_to_features=keys_to_features,
                               items_to_handlers=items_to_handlers,
                               capacity=1000)

    image, label = dataset.get([‘image‘, ‘label‘])
    # 将图像像素值转换为float并统一大小
    image = tf.to_float(image)
    image = tf.image.resize_image_with_crop_or_pad(image, 28, 28)
    return image, label

  def model_fn(inputs, run_mode, **kwargs):
    # 获取一批输入数据
    images, labels = inputs
    # 将输入图像进行归一化
    images = tf.subtract(images, 128.0)
    images = tf.div(images, 128.0)
    # 定义函数参数作用域:
    # 1. 所有的卷积和全链接L2正则项系数为0
    # 2. 所有的卷积和全链接使用截断正态分布初始化待训练变量
    # 3. 所有的卷积和全链接的激活层采用ReLU
    with slim.arg_scope(
        [slim.conv2d, slim.fully_connected],
        weights_regularizer=slim.l2_regularizer(scale=0.0),
        weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
        activation_fn=tf.nn.relu):
      # 定义网络
      net = slim.conv2d(images, 32, [5, 5])
      net = slim.max_pool2d(net, [2, 2], 2)
      net = slim.conv2d(net, 64, [5, 5])
      net = slim.max_pool2d(net, [2, 2], 2)
      net = slim.flatten(net)
      net = slim.fully_connected(net, 1024)
      net = slim.dropout(net, 0.5, is_training=True)
      logits = slim.fully_connected(net, 10, activation_fn=None)
    labels_one_hot = slim.one_hot_encoding(labels, 10)
    # 定义交叉熵损失值
    loss = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels_one_hot,
      label_smoothing=0.0, weights=1.0)
    # 由于函数参数作用域定义了所有L2正则项系数为0,所以这里将不会获取到任何L2正则项
    regularization_losses = mox.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

    if len(regularization_losses) > 0:
      regularization_loss = tf.add_n(regularization_losses)
      loss += regularization_loss
    # 定义评价指标
    accuracy_top_1 = tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32))
    accuracy_top_5 = tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32))
    # 必须返回mox.ModelSpec
    return mox.ModelSpec(loss=loss,
                         log_info={‘loss‘: loss, ‘top1‘: accuracy_top_1, ‘top5‘: accuracy_top_5})

  # 获取一个内置的Optimizer
  optimizer_fn = mox.get_optimizer_fn(‘sgd‘, learning_rate=0.01)

  # 启动训练
  mox.run(input_fn=input_fn,
          model_fn=model_fn,
          optimizer_fn=optimizer_fn,
          run_mode=mox.ModeKeys.TRAIN,
          batch_size=50,
          log_dir=flags.train_dir,
          max_number_of_steps=2000,
          log_every_n_steps=10,
          save_summary_steps=50,
          save_model_secs=60)

if __name__ == ‘__main__‘:
  train_my_model()

华为云AI-深度学习糖尿病预测

标签:key   1.4   utc   代码   lse   sample   截断   统一   regular   

原文地址:http://blog.51cto.com/13959448/2326079

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!