标签:use size n+1 bsp sort not roc fit print
1. 数据准备:收集数据与读取
2. 数据预处理:处理数据
3. 训练集与测试集:将先验数据按一定比例进行拆分。
4. 提取数据特征,将文本解析为词向量 。
5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 。
6. 测试模型:用测试数据集评估模型预测的正确率。
混淆矩阵
准确率、精确率、召回率、F值
7. 预测一封新邮件的类别
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer
#预处理
def preprocessing(text): # text = text.decode("utf-8") tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] stops = stopwords.words(‘english‘) tokens = [token for token in tokens if token not in stops] tokens = [token.lower() for token in tokens if len(token) >= 3] lmtzr = WordNetLemmatizer() tokens = [lmtzr.lemmatize(token) for token in tokens] preprocessed_text = ‘ ‘.join(tokens) return preprocessed_text
#读取数据集 import csv file_path=r‘C:\User\Administrator\Desktop\sms.txt‘ sms=open(file_path,‘r‘,encoding=‘utf-8‘) sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter=‘\t‘) for line in csv_reader: sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close();
#按0.7:0.3比例分为训练集和测试集
import numpy as np sms_data=np.array(sms_data) sms_label=np.array(sms_label)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
#将其向量化
from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words=‘english‘, strip_accents=‘unicode‘) # ,norm=‘12‘ x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) return x_train,x_test,vectorizer
def beiNB(x_train, y_train,x_test):
# 朴素贝叶斯分类器
from sklearn.navie_bayes import MultinomialNB
clf = MultinomialNB().fit(x_train, y_train)
y_nb_pred = clf.predict(x_test)
return y_nb_pred,clf
def result(vectorizer,clf):
# 分类结果 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(y_nb_pred.shape, y_nb_pred) print(‘nb_confusion_matrix:‘) cm = confusion_matrix(y_test, y_nb_pred) print(cm) cr = classification_report(y_test, y_nb_pred) print(cr)
feature_name=vectorizer.get_feature_name()#出现过的单词列表 coefs=clf_coef_ #先验概率 P(x_i|y),6034 feaute_log_prob_ intercept=clf.intercept_ coefs_with_fns=sorted(zip(coefs[0],feature_names))#对数概率p(x_i|y)与单词x_i映射 n=10 top=zip(coefs_with_fns[:n],coefs_with_fns[:-(n+1):-1])#最大的10个与最小的10个单词 for (coef_1,fn_1),(coef_2,fn_2) in top: print(‘\t%.4f\t%-15s\t\t%.4f\t%-15s‘ % (coef_1,fn_1,coef_2,fn_2))
标签:use size n+1 bsp sort not roc fit print
原文地址:https://www.cnblogs.com/844115-l/p/10072330.html