码迷,mamicode.com
首页 > 其他好文 > 详细

luogu P4491 [HAOI2018]染色

时间:2018-12-07 11:57:01      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:fine   rac   efi   枚举   ons   pre   ==   bin   lin   

传送门

这一类题都要考虑推式子

首先推出题目要求的式子,枚举正好有\(s\)个颜色的种类(范围\([0,p=min(\lfloor\frac{n}{s}\rfloor,m)]\)),然后对于后面的颜色可能也有数量为\(s\)的,容斥一下即可,即\[ans=\sum_{k=0}^{p}w_k*\binom{m}{k}*\binom{n}{ks}*\frac{(ks)!}{(s!)^k}\sum_{i=0}^{p-k}(-1)^i*\binom{m-k}{i}*\binom{n-ks}{is}*\frac{(is)!}{(s!)^i}*(m-k-i)^{n-ks-is}\]

\[ans=\sum_{k=0}^{p}w_k*\frac{m!}{k!(m-k)!}*\frac{n!}{(ks)!(n-ks)!}*\frac{(ks)!}{(s!)^k}\sum_{i=k}^{p}(-1)^{i-k}*\frac{(m-k)!}{(i-k)!(m-i)!}*\frac{(n-ks)!}{(is-ks)!(n-is)!}*\frac{(is-ks)!}{(s!)^{i-k}}*(m-i)^{n-is}\]

\[ans=n!m!\sum_{k=0}^{p}w_k*\frac{1}{k!(m-k)!}*\frac{1}{(n-ks)!}*\frac{1}{(s!)^k}\sum_{i=k}^{p}(-1)^{i-k}*\frac{(m-k)!}{(i-k)!(m-i)!}*\frac{(n-ks)!}{(n-is)!}*\frac{1}{(s!)^{i-k}}*(m-i)^{n-is}\]

\[ans=n!m!\sum_{k=0}^{p}\frac{w_k}{k!(s!)^k}\sum_{i=k}^{p}\frac{(-1)^{i-k}}{(i-k)!(s!)^{i-k}}*\frac{(m-i)^{n-is}}{(m-i)!(n-is)!}\]

\[ans=n!m!\sum_{i=0}^{p}\frac{(m-i)^{n-is}}{(m-i)!(n-is)!}\sum_{k=0}^{i}\frac{w_k}{k!(s!)^k}*\frac{(-1)^{i-k}}{(i-k)!(s!)^{i-k}}\]

前面可以枚举,后面直接\(NTT\)

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register
  
using namespace std;
const int N=100000+10,M=270000+10,O=10000000+10,mod=1004535809,g=3;
il int rd()
{
  int x=0,w=1;char ch=0;
  while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
  while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
  return x*w;
}
int mm,nn,l,a[M],b[M],rdr[M];
il int fpow(int a,int b)
{
  int an=1;
  while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;}  return an;
}
il void ntt(int *a,int op)
{
  int W,w,x,y;
  for(int i=0;i<nn;++i) if(i<rdr[i]) swap(a[i],a[rdr[i]]);
  for(int i=1;i<nn;i<<=1)
    {
      W=fpow(g,(mod-1)/(i<<1));
      if(op==-1) W=fpow(W,mod-2);
      for(int j=0;j<nn;j+=i<<1)
        {
          w=1;
          for(int k=0;k<i;++k,w=1ll*w*W%mod)
            {
              x=a[j+k],y=1ll*w*a[j+k+i]%mod;
              a[j+k]=(x+y)%mod,a[j+k+i]=(x-y+mod)%mod;
            }
        }
    }
}
int n,m,s,p,w[N],fac[O],iac[O];

int main()
{
  n=rd(),m=rd(),s=rd();
  p=min(n/s,m);
  for(int i=0;i<=m;++i) w[i]=rd();
  fac[0]=1;
  int ma=max(s,max(n,m));
  for(int i=1;i<=ma;++i) fac[i]=1ll*fac[i-1]*i%mod;
  iac[ma]=fpow(fac[ma],mod-2);
  for(int i=ma;i>=1;--i) iac[i-1]=1ll*iac[i]*i%mod;
  for(int i=0;i<=p;++i) a[i]=1ll*w[i]*iac[i]%mod*fpow(iac[s],i)%mod;
  for(int i=0;i<=p;++i) b[i]=(i&1)?mod-1ll*iac[i]*fpow(iac[s],i)%mod:1ll*iac[i]*fpow(iac[s],i)%mod;
  mm=p+p;
  for(nn=1;nn<=mm;nn<<=1) ++l;
  for(int i=0;i<nn;++i) rdr[i]=(rdr[i>>1]>>1)|((i&1)<<(l-1));
  ntt(a,1),ntt(b,1);
  for(int i=0;i<nn;++i) a[i]=1ll*a[i]*b[i]%mod;
  ntt(a,-1);
  int invnn=fpow(nn,mod-2),ans=0;
  for(int i=0;i<=p;++i)
    ans=(ans+1ll*fpow(m-i,n-i*s)*iac[m-i]%mod*iac[n-i*s]%mod*a[i]%mod*invnn%mod)%mod;
  ans=1ll*ans*fac[n]%mod*fac[m]%mod;
  printf("%d\n",ans);
  return 0;
}

luogu P4491 [HAOI2018]染色

标签:fine   rac   efi   枚举   ons   pre   ==   bin   lin   

原文地址:https://www.cnblogs.com/smyjr/p/10080985.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!