码迷,mamicode.com
首页 > 其他好文 > 详细

numpy基础四

时间:2018-12-10 13:52:10      阅读:177      评论:0      收藏:0      [点我收藏+]

标签:revel   基础   5.6   垂直   [1]   大小   生成   space   设置   

数组的形状

  1. arange(i) 生成0到i的序列,不包括i
  2. shape 维度/形状
  3. reshape 重新设置形状
  4. newaxis 新的维度
  5. squeeze 去掉空维度
  6. transpose/T 变化形状
  7. concatenate 矩阵链接
  8. vstack 垂直合并
  9. hstack 水平合并
  10. flatten
  11. ravel

arange

array_aange=np.arange(10)

#>>>
[0 1 2 3 4 5 6 7 8 9]

shape

array_shape=np.arange(10)
array_shape.shape

#>>>
(10,)

reshape

array_reshape=np.arange(10)
array_reshape.reshape(1,10) #大小必须不能改变 10个元素,变化后还是10个

#>>>
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

newaxis

array_newaxis=np.arange(10)
array_newaxis=array_newaxis[np.newaxis,:]
print(array_newaxis)
print(array_newaxis.shape)


# >>>
[[0 1 2 3 4 5 6 7 8 9]]
(1, 10)


array_newaxis=np.arange(10)
array_newaxis=array_newaxis[:,np.newaxis]
print(array_newaxis)
print(array_newaxis.shape)

#>>>
[[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]
(10, 1)

squeeze

array_newaxis=np.arange(10)
array_newaxis=array_newaxis[:,np.newaxis,np.newaxis]
print(array_newaxis)
print(array_newaxis.shape)
#>>>
[[[0]]
 [[1]]
 [[2]]
 [[3]]
 [[4]]
 [[5]]
 [[6]]
 [[7]]
 [[8]]
 [[9]]]
(10, 1, 1)


array_squeeze=array_newaxis.squeeze()
print(array_squeeze)

#>>>
[0 1 2 3 4 5 6 7 8 9]

transpose 形状转换

array_transpose=np.array([[1,2,3,4,5],[2,3,4,5,6]])
array_transpose.transpose()

#>>>
array([[1, 2],
       [2, 3],
       [3, 4],
       [4, 5],
       [5, 6]])

concatenate数组链接

a=np.array([[1,2,3,4,5],[5,4,3,2,1]])
b=np.array([[0,9,8,7,6],[6,7,8,9,0]])

array_concatenate=np.concatenate((a,b))
print(array_concatenate)
#>>>
[[1 2 3 4 5]
 [5 4 3 2 1]
 [0 9 8 7 6]
 [6 7 8 9 0]]


array_concatnate_axis=np.concatenate((a,b),axis=1)
print(array_concatnate_axis)
#>>>
[[1 2 3 4 5 0 9 8 7 6]
 [5 4 3 2 1 6 7 8 9 0]]
array_concatnate_axis.shape
#>>>
(2, 10)

vstack 垂直合并

a=np.array([[1,2,3,4,5],[5,4,3,2,1]])
b=np.array([[0,9,8,7,6],[6,7,8,9,0]])

np.vstack((a,b))

#>>>
array([[1, 2, 3, 4, 5],
       [5, 4, 3, 2, 1],
       [0, 9, 8, 7, 6],
       [6, 7, 8, 9, 0]])

hstack 水平合并

np.hstack((a,b)) 水平合并
#>>>
array([[1, 2, 3, 4, 5, 0, 9, 8, 7, 6],
       [5, 4, 3, 2, 1, 6, 7, 8, 9, 0]])

flatten 合并成一行

array_flatten=np.array([[1,2,3,4],[4,5,6,7]])
array_flatten.flatten()
#>>>
array([1, 2, 3, 4, 4, 5, 6, 7])

revel合并成一行

array_ravel=np.array([[1,2,3,4],[4,5,6,7]])
array_ravel.ravel()
#>>>
array([1, 2, 3, 4, 4, 5, 6, 7])

数组的生成

  1. arange
  2. linspace
  3. logspace
  4. meshgrid
  5. r_
  6. c_
  7. zeros
  8. ones
  9. empty
  10. fill
  11. zeros_like
  12. ones_likes
  13. identity 基准矩阵

range

array_arange=np.arange(10)
print(array_arange)
array_arang_b=np.arange(1,10,2)
print(array_arang_b)
array_arange_c=np.arange(1,10,5,dtype=np.float32)

#>>>
[0 1 2 3 4 5 6 7 8 9]
[1 3 5 7 9]

linspace

array_linspace=np.linspace(1,10) ##默认等差数列个数为 50。
print(array_linspace)
array_linpsace_a=np.linspace(1,10,2)

#>>>
 [1.          1.18367347  1.36734694  1.55102041  1.73469388  1.91836735
  2.10204082  2.28571429  2.46938776  2.65306122  2.83673469  3.02040816
  3.20408163  3.3877551   3.57142857  3.75510204  3.93877551  4.12244898
  4.30612245  4.48979592  4.67346939  4.85714286  5.04081633  5.2244898
  5.40816327  5.59183673  5.7755102   5.95918367  6.14285714  6.32653061
  6.51020408  6.69387755  6.87755102  7.06122449  7.24489796  7.42857143
  7.6122449   7.79591837  7.97959184  8.16326531  8.34693878  8.53061224
  8.71428571  8.89795918  9.08163265  9.26530612  9.44897959  9.63265306
  9.81632653 10.        ]

logspace

np.logspace(0,1,5)  # 10的0次幂到10的1次幂  5个等比列数据
#>>>
array([ 1.        ,  1.77827941,  3.16227766,  5.62341325, 10.        ])

meshgrid

x=np.linspace(-10,10,5)
print(x)
y=np.linspace(-20,20,5)
print(y)
#>>>
[-10.  -5.   0.   5.  10.]
[-20. -10.   0.  10.  20.]

x1,y1=np.meshgrid(x,y)
print(x1)
print(y1)

#>>>
[[-10.  -5.   0.   5.  10.]
 [-10.  -5.   0.   5.  10.]
 [-10.  -5.   0.   5.  10.]
 [-10.  -5.   0.   5.  10.]
 [-10.  -5.   0.   5.  10.]]

[[-20. -20. -20. -20. -20.]
 [-10. -10. -10. -10. -10.]
 [  0.   0.   0.   0.   0.]
 [ 10.  10.  10.  10.  10.]
 [ 20.  20.  20.  20.  20.]]

r_ row 行向量

np.r_[0:10:1]
#>>>
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

c_ col 列向量

np.c_[0:10:1]

#>>>
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5],
       [6],
       [7],
       [8],
       [9]])

zeros填充0

np.zeros(5)
array([0., 0., 0., 0., 0.])

np.zeros((5,5))
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])

ones填充1

np.ones(5)

#>>>
array([1., 1., 1., 1., 1.])

np.ones((5,5))

array([[1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.]])

empty空地址

np.empty(5)
np.empty((5,5))

fill 自定义填充

a=np.empty((5,5))
a.fill(3)
print(a)
#>>>
[[3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]]

zeros_like ones_like

temp=np.arange(0,10,2)
print(temp)
#>>>
[0 2 4 6 8]

result=np.zeros_like(temp)
print(result)
#>>>
[0 0 0 0 0]

result_ones=np.ones_like(temp)
print(result_ones)
#>>>
[1 1 1 1 1]

identity 对角矩阵

np.identity(5)
#>>>

array([[1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 1.]])

numpy基础四

标签:revel   基础   5.6   垂直   [1]   大小   生成   space   设置   

原文地址:https://www.cnblogs.com/panfengde/p/10095552.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!