标签:boolean 机器人 cap 爬楼梯 复数 等于 变量 matrix false
目录
思路:
// 设置边界变量
int m = matrix.length, n = matrix[0].length;
int left = 0, right = n - 1, up = 0, down = m - 1;
// 循环,注意right = n - 1,所以遍历范围i <= right
while (true){
for (int i = left; i <= right; i++){
res.add(matrix[up][i]);
// 获取回旋矩阵的话用 res[up][i] = val++;
}
if (++up > down) break;
for (int i = up; i <= down; i++){
res.add(matrix[i][right]);
}
if (--right < left) break;
for (int i = right; i >= left; i--){
res.add(matrix[down][i]);
}
if (--down < up) break;
for (int i = down; i >= up; i--){
res.add(matrix[i][left]);
}
if (++left > right) break;
}
一个机器人位于一个 m x n 网格的左上角 。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。
思路:画图
int[] dp = new int[n];
dp[0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[j] += dp[j - 1];
}
}
return dp[n-1];
与上面未经优化的代码有点像。
思路:
int m = grid.length, n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) dp[i][0] = grid[i][0] + dp[i - 1][0];
for (int i = 1; i < n; ++i) dp[0][i] = grid[0][i] + dp[0][i - 1];
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = grid[i][j] + Math.min(dp[i - 1][j], dp[i][j - 1]);
}
}
return dp[m - 1][n - 1];
思路:
要注意的是下面j的范围j <= i
for (int i = n - 2; i >= 0; i--){
for (int j = 0; j <= i; j++){
dp[j] = Math.min(dp[j], dp[j+1]) + m.get(i).get(j);
}
}
思路:
思路:
// 设置人数变量、朋友圈数计算器
int n = M.length, cnt = 0;
// 记录visited的人的数组
boolean[] visited = new boolean[n];
// 按顺序遍历每个人,如果没有访问过才开始调用helper
for (int i = 0; i < n; i++){
// 如果未访问过,就调用helper
if (!visited[i]){
helper(M, i, visited);
// 遍历一次,朋友圈数 +1
cnt++;
}
}
return cnt;
// helper
visited[k] = true;
// 遍历这个人的朋友
for (int i = 1; i < m.length; i++){
// 如果这个人是朋友,而且没有访问过,那就调用helper
if (m[k][i] == 1 && !visited[i]){
helper(m, i, visited);
}
}
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出: 3
解释:
长度最长的公共子数组是 [3, 2, 1]。
思路:
dp[j] = A[i] == B[j] ? dp[j-1] + 1 : 0
。然后画图,先画二维,再到一维。思路:
if (i == 0 || j == 0) dp[i][j] = matrix[i][j] - ‘0‘;
else if (matrix[i][j] == ‘1‘) {
dp[i][j] = 当前dp左上,上,左的最小值 + 1;
}
res = Math.max(res, dp[i][j]);
return res * res;
121:只允许一笔交易
122:允许多笔交易
123:只允许两笔交易
714:允许多笔交易,包含手续费
188:只允许k笔交易
int sell = 0, buy = Integer.MIN_VALUE + free; // free为714,防止第一步溢出
for (int price : prices){
// 第二个 sell 表示第i天前最后一个操作是卖,此时的最大收益。第一步的sell肯定得到0
sell = Math.max(sell, price + buy - free); // free为714
// 121
// buy = Math.max(buy, 0 - price);
// 122
buy = Math.max(buy, sell - price);
}
return sell;
// 123
int buy1 = Integer.MIN_VALUE, sell1 = 0;
int buy2 = Integer.MIN_VALUE, sell2 = 0;
for (int price : prices) {
// 这里要倒排,因为sell2是依赖之前的buy2数据,buy2依赖之前的sell1数据,如此类推
sell2 = Math.max(sell2, buy2 + price);
buy2 = Math.max(buy2, sell1 - price);
sell1 = Math.max(sell1, buy1 + price);
buy1 = Math.max(buy1, 0 - price); // max寻找最低购入价,第一步buy的sell都是0
}
return sell2;
// 188
if (k > prices.length) {
// 122代码
}
// 下面代码把k改为2,就是123的答案
int[] buyArr = new int[k+1];
int[] sellArr = new int[k+1];
Arrays.fill(buyArr,Integer.MIN_VALUE);
for (int price : prices) {
for (int i = k; i > 0; i--) {
sellArr[i] = Math.max(sellArr[i], price + buyArr[i]);
buyArr[i] = Math.max(buyArr[i], sellArr[i-1] - price);
}
}
return sellArr[k];
判断数组中的数是否可以被分割成两份和相等的子集
思路:
dp[i] = dp[i] || dp[i - num]
int sum = 0;
for (int num : nums) sum += num;
if ((sum & 1) != 0) return false;
int target = sum >> 1;
// dp[i]表示上面解法的 j ,即前面所有元素的组合的"和"是否能够等于i
boolean[] dp = new boolean[target + 1];
dp[0] = true;
for (int num : nums) {
// 直接从num开始,因为考虑了num,那么其组合最小也等于num
for (int i = target; i >= num ; i--) {
dp[i] = dp[i] || dp[i - num];
}
}
return dp[target];
01背包
思路:
递推公式f[i][j] = Math.max(f[i - 1][j - w[i - 1]] + p[i - 1], f[i - 1][j]);
取和不取第i个物品的最大值作为f[i][j]。从公式中可知,没有j-1,所以dp在j的维度上不需要1。另外,公式中考虑了i-1,所以dp在i维度上要+1,而i=1时所考虑的0,即没有考虑任何物品,所以dp值自然都是0,不需要另外初始化。由于只考虑i-1,所以可以用一维的dp,每次更新dp时,其本身的值就是之前的值。要注意的是j的起始值为当前物品的重量,因为小于这个重量,就不可能考虑加入这个物品了。最后,由于j - w[i - 1]
,说明j要考虑之前的值,所以1维的覆盖要从后往前。
int[] dp = new int[capacity];
for (int i = 0; i < n; i++) {
for (int j = capacity-1; j >= w[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - w[i]] + p[i]);
}
}
return dp[capacity-1];
最近等分子集
思路:
dp[i] = Math.max(dp[i - num] + num, dp[i]);
与“416分割等和子集”一样的方式得出target,由于取最接近,所以不需要判断可能性。dp也类似,选取的是i代表子集中所考虑的与for (int num : arr) {
for (int i = target-1; i >= num; i--) {
dp[i] = Math.max(dp[i - num] + num, dp[i]);
}
}
return sum - 2 * dp[target-1];
f(x) = f(x-1) + f(x-2)
标签:boolean 机器人 cap 爬楼梯 复数 等于 变量 matrix false
原文地址:https://www.cnblogs.com/code2one/p/10100188.html