标签:hit 中文乱码问题 正则 大小写 数字 查看 his 浏览器 target
其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指定数据解析。因为大多数情况下的需求,我们都会指定去使用聚焦爬虫,也就是爬取页面中指定部分的数据值,而不是整个页面的数据。因此,本次课程中会给大家详细介绍讲解三种聚焦爬虫中的数据解析方式。至此,我们的数据爬取的流程可以修改为:
今日概要
知识点回顾
单字符:
. : 除换行以外所有字符
[] :[aoe] [a-w] 匹配集合中任意一个字符
\d :数字 [0-9]
\D : 非数字
\w :数字、字母、下划线、中文
\W : 非\w
\s :所有的空白字符包,括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S : 非空白
数量修饰:
* : 任意多次 >=0
+ : 至少1次 >=1
? : 可有可无 0次或者1次
{m} :固定m次 hello{3,}
{m,} :至少m次
{m,n} :m-n次
边界:
$ : 以某某结尾
^ : 以某某开头
分组:
(ab)
贪婪模式: .*
非贪婪(惰性)模式: .*?
re.I : 忽略大小写
re.M :多行匹配
re.S :单行匹配
re.sub(正则表达式, 替换内容, 字符串)
import re
#提取出python
key="javapythonc++php"
re.findall(‘python‘,key)[0]
#####################################################################
#提取出hello world
key="<html><h1>hello world<h1></html>"
re.findall(‘<h1>(.*)<h1>‘,key)[0]
#####################################################################
#提取170
string = ‘我喜欢身高为170的女孩‘
re.findall(‘\d+‘,string)
#####################################################################
#提取出http://和https://
key=‘http://www.baidu.com and https://boob.com‘
re.findall(‘https?://‘,key)
#####################################################################
#提取出hello
key=‘lalala<hTml>hello</HtMl>hahah‘ #输出<hTml>hello</HtMl>
re.findall(‘<[Hh][Tt][mM][lL]>(.*)</[Hh][Tt][mM][lL]>‘,key)
#####################################################################
#提取出hit.
key=‘bobo@hit.edu.com‘#想要匹配到hit.
re.findall(‘h.*?\.‘,key)
#####################################################################
#匹配sas和saas
key=‘saas and sas and saaas‘
re.findall(‘sa{1,2}s‘,key)
#####################################################################
#匹配出i开头的行
string = ‘‘‘fall in love with you
i love you very much
i love she
i love her‘‘‘
re.findall(‘^.*‘,string,re.M)
#####################################################################
#匹配全部行
string1 = """<div>静夜思
窗前明月光
疑是地上霜
举头望明月
低头思故乡
</div>"""
re.findall(‘.*‘,string1,re.S)
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
import re
import os
if __name__ == "__main__":
url = ‘https://www.qiushibaike.com/pic/%s/‘
headers={
‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36‘,
}
#指定起始也结束页码
page_start = int(input(‘enter start page:‘))
page_end = int(input(‘enter end page:‘))
#创建文件夹
if not os.path.exists(‘images‘):
os.mkdir(‘images‘)
#循环解析且下载指定页码中的图片数据
for page in range(page_start,page_end+1):
print(‘正在下载第%d页图片‘%page)
new_url = format(url % page)
response = requests.get(url=new_url,headers=headers)
#解析response中的图片链接
e = ‘<div class="thumb">.*?<img src="(.*?)".*?>.*?</div>‘
pa = re.compile(e,re.S)
image_urls = pa.findall(response.text)
#循环下载该页码下所有的图片数据
for image_url in image_urls:
image_url = ‘https:‘ + image_url
image_name = image_url.split(‘/‘)[-1]
image_path = ‘images/‘+image_name
image_data = requests.get(url=image_url,headers=headers).content
with open(image_path,‘wb‘) as fp:
fp.write(image_data)
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>测试bs4</title>
</head>
<body>
<div>
<p>百里守约</p>
</div>
<div class="song">
<p>李清照</p>
<p>王安石</p>
<p>苏轼</p>
<p>柳宗元</p>
<a href="http://www.song.com/" title="赵匡胤" target="_self">
<span>this is span</span>
宋朝是最强大的王朝,不是军队的强大,而是经济很强大,国民都很有钱</a>
<a href="" class="du">总为浮云能蔽日,长安不见使人愁</a>
<img src="http://www.baidu.com/meinv.jpg" alt="" />
</div>
<div class="tang">
<ul>
<li><a href="http://www.baidu.com" title="qing">清明时节雨纷纷,路上行人欲断魂,借问酒家何处有,牧童遥指杏花村</a></li>
<li><a href="http://www.163.com" title="qin">秦时明月汉时关,万里长征人未还,但使龙城飞将在,不教胡马度阴山</a></li>
<li><a href="http://www.126.com" alt="qi">岐王宅里寻常见,崔九堂前几度闻,正是江南好风景,落花时节又逢君</a></li>
<li><a href="http://www.sina.com" class="du">杜甫</a></li>
<li><a href="http://www.dudu.com" class="du">杜牧</a></li>
<li><b>杜小月</b></li>
<li><i>度蜜月</i></li>
<li><a href="http://www.haha.com" id="feng">凤凰台上凤凰游,凤去台空江自流,吴宫花草埋幽径,晋代衣冠成古丘</a></li>
</ul>
</div>
</body>
</html>
属性定位:
#找到class属性值为song的div标签
//div[@class="song"]
层级&索引定位:
#找到class属性值为tang的div的直系子标签ul下的第二个子标签li下的直系子标签a
//div[@class="tang"]/ul/li[2]/a
逻辑运算:
#找到href属性值为空且class属性值为du的a标签
//a[@href="" and @class="du"]
模糊匹配:
//div[contains(@class, "ng")]
//div[starts-with(@class, "ta")]
取文本:
# /表示获取某个标签下的文本内容
# //表示获取某个标签下的文本内容和所有子标签下的文本内容
//div[@class="song"]/p[1]/text()
//div[@class="tang"]//text()
取属性:
//div[@class="tang"]//li[2]/a/@href
1.下载:pip install lxml
2.导包:from lxml import etree
3.将html文档或者xml文档转换成一个etree对象,然后调用对象中的方法查找指定的节点
2.1 本地文件:tree = etree.parse(文件名)
tree.xpath("xpath表达式")
2.2 网络数据:tree = etree.HTML(网页内容字符串)
tree.xpath("xpath表达式")
将xpath插件拖动到谷歌浏览器拓展程序(更多工具)中,安装成功
启动和关闭插件 ctrl + shift + x
项目需求:获取好段子中段子的内容和作者 http://www.haoduanzi.com
from lxml import etree
import requests
url=‘http://www.haoduanzi.com/category-10_2.html‘
headers = {
‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36‘,
}
url_content=requests.get(url,headers=headers).text
#使用xpath对url_conten进行解析
#使用xpath解析从网络上获取的数据
tree=etree.HTML(url_content)
#解析获取当页所有段子的标题
title_list=tree.xpath(‘//div[@class="log cate10 auth1"]/h3/a/text()‘)
ele_div_list=tree.xpath(‘//div[@class="log cate10 auth1"]‘)
text_list=[] #最终会存储12个段子的文本内容
for ele in ele_div_list:
#段子的文本内容(是存放在list列表中)
text_list=ele.xpath(‘./div[@class="cont"]//text()‘)
#list列表中的文本内容全部提取到一个字符串中
text_str=str(text_list)
#字符串形式的文本内容防止到all_text列表中
text_list.append(text_str)
print(title_list)
print(text_list)
import requests
from lxml import etree
from fake_useragent import UserAgent
import base64
import urllib.request
url = ‘http://jandan.net/ooxx‘
ua = UserAgent(verify_ssl=False,use_cache_server=False).random
headers = {
‘User-Agent‘:ua
}
page_text = requests.get(url=url,headers=headers).text
#查看页面源码:发现所有图片的src值都是一样的。
#简单观察会发现每张图片加载都是通过jandan_load_img(this)这个js函数实现的。
#在该函数后面还有一个class值为img-hash的标签,里面存储的是一组hash值,该值就是加密后的img地址
#加密就是通过js函数实现的,所以分析js函数,获知加密方式,然后进行解密。
#通过抓包工具抓取起始url的数据包,在数据包中全局搜索js函数名(jandan_load_img),然后分析该函数实现加密的方式。
#在该js函数中发现有一个方法调用,该方法就是加密方式,对该方法进行搜索
#搜索到的方法中会发现base64和md5等字样,md5是不可逆的所以优先考虑使用base64解密
#print(page_text)
tree = etree.HTML(page_text)
#在抓包工具的数据包响应对象对应的页面中进行xpath的编写,而不是在浏览器页面中。
#获取了加密的图片url数据
imgCode_list = tree.xpath(‘//span[@class="img-hash"]/text()‘)
imgUrl_list = []
for url in imgCode_list:
#base64.b64decode(url)为byte类型,需要转成str
img_url = ‘http:‘+base64.b64decode(url).decode()
imgUrl_list.append(img_url)
for url in imgUrl_list:
filePath = url.split(‘/‘)[-1]
urllib.request.urlretrieve(url=url,filename=filePath)
print(filePath+‘下载成功‘)
【重点】
- 问题:往往在进行大量请求发送的时候,经常会报出这一样的一个错误:HTTPConnectionPool(host:XX)Max retries exceeded with url。
- 原因:
1.每次数据传输前客户端要和服务器建立TCP连接,为节省传输消耗,默认为keep-alive,即连接一次,传输多次。然而如果连接迟迟不断开的话,则连接池满后则无法产生新的链接对象,导致请求无法发送。
2.ip被封
3.请求频率太频繁
- 解决:如果下列解决未生效,则可以尝试再次执行程序
1.设置请求头中的Connection的值为close,表示每次请求成功后断开连接
2.更换请求ip
3.每次请求之间使用sleep进行等待间隔
import requests
from fake_useragent import UserAgent
from lxml import etree
import random
import time
url = ‘http://sc.chinaz.com/jianli/free_%d.html‘
ua = UserAgent(verify_ssl=False,use_cache_server=False).random
headers = {
‘User-Agent‘:ua,
#保证http请求成功后,立即断开连接,以解决HTTPConnectionPool(host:XX)Max retries exceeded with url的问题
‘Connection‘: ‘close‘, #该行不写,则会报错
}
#proxy_list = [‘101.255.56.201:36501‘,‘39.137.69.10:8080‘,‘195.29.106.178:58292‘,‘120.76.77.152:9999‘,‘178.75.1.111:50411‘,‘78.156.225.170:41258‘,‘193.192.177.196:56480‘]
for pageNum in range(1,3):
get_url = format(url%pageNum)
if pageNum==1:
get_url = ‘http://sc.chinaz.com/jianli/free.html‘
response = requests.get(url=get_url,headers=headers)
response.encoding = ‘utf-8‘#处理中文乱码问题
page_text = response.text
tree = etree.HTML(page_text)
div_list = tree.xpath(‘//div[@id="container"]/div‘)
for div in div_list:
second_url = div.xpath(‘./a/@href‘)[0]
name = div.xpath(‘./p/a/text()‘)[0]+‘.rar‘
second_page_text = requests.get(url=second_url,headers=headers).text
second_tree = etree.HTML(second_page_text)
download_url_list = second_tree.xpath(‘//div[@class="clearfix mt20 downlist"]/ul/li/a/@href‘)
download_url = random.choice(download_url_list)
data = requests.get(url=download_url,headers=headers).content
with open(name,‘wb‘) as fp:
fp.write(data)
print(‘下载完毕===>‘+name)
#解决HTTPConnectionPool(host:XX)Max retries exceeded with url的问题:
#time.sleep(3) #延长请求时间,模拟浏览器,否则请求频率太快会请求失败
#使用代理池
#设置请求头信息中的Connection为close
- 需要将pip源设置为国内源,阿里源、豆瓣源、网易源等
- windows
(1)打开文件资源管理器(文件夹地址栏中)
(2)地址栏上面输入 %appdata%
(3)在这里面新建一个文件夹 pip
(4)在pip文件夹里面新建一个文件叫做 pip.ini ,内容写如下即可
[global]
timeout = 6000
index-url = https://mirrors.aliyun.com/pypi/simple/
trusted-host = mirrors.aliyun.com
- linux
(1)cd ~
(2)mkdir ~/.pip
(3)vi ~/.pip/pip.conf
(4)编辑内容,和windows一模一样
- 需要安装:pip install bs4
bs4在使用时候需要一个第三方库,把这个库也安装一下
pip install lxml
使用流程:
- 导包:from bs4 import BeautifulSoup
- 使用方式:可以将一个html文档,转化为BeautifulSoup对象,然后通过对象的方法或者属性去查找指定的节点内容
(1)转化本地文件:
- soup = BeautifulSoup(open(‘本地文件‘), ‘lxml‘)
(2)转化网络文件:
- soup = BeautifulSoup(‘字符串类型或者字节类型‘, ‘lxml‘)
(3)打印soup对象显示内容为html文件中的内容
基础巩固:
(1)根据标签名查找
- soup.a 只能找到第一个符合要求的标签
(2)获取属性
- soup.a.attrs 获取a所有的属性和属性值,返回一个字典
- soup.a.attrs[‘href‘] 获取href属性
- soup.a[‘href‘] 也可简写为这种形式
(3)获取内容
- soup.a.string
- soup.a.text
- soup.a.get_text()
【注意】如果标签还有标签,那么string获取到的结果为None,而其它两个,可以获取文本内容
(4)find:找到第一个符合要求的标签
- soup.find(‘a‘) 找到第一个符合要求的
- soup.find(‘a‘, title="xxx")
- soup.find(‘a‘, alt="xxx")
- soup.find(‘a‘, class_="xxx")
- soup.find(‘a‘, id="xxx")
(5)find_all:找到所有符合要求的标签
- soup.find_all(‘a‘)
- soup.find_all([‘a‘,‘b‘]) 找到所有的a和b标签
- soup.find_all(‘a‘, limit=2) 限制前两个
(6)根据选择器选择指定的内容
select:soup.select(‘#feng‘)
- 常见的选择器:标签选择器(a)、类选择器(.)、id选择器(#)、层级选择器
- 层级选择器:
div .dudu #lala .meme .xixi 下面好多级
div > p > a > .lala 只能是下面一级
【注意】select选择器返回永远是列表,需要通过下标提取指定的对象
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
from bs4 import BeautifulSoup
headers={
‘User-Agent‘: ‘Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36‘,
}
def parse_content(url):
#获取标题正文页数据
page_text = requests.get(url,headers=headers).text
soup = BeautifulSoup(page_text,‘lxml‘)
#解析获得标签
ele = soup.find(‘div‘,class_=‘chapter_content‘)
content = ele.text #获取标签中的数据值
return content
if __name__ == "__main__":
url = ‘http://www.shicimingju.com/book/sanguoyanyi.html‘
reponse = requests.get(url=url,headers=headers)
page_text = reponse.text
#创建soup对象
soup = BeautifulSoup(page_text,‘lxml‘)
#解析数据
a_eles = soup.select(‘.book-mulu > ul > li > a‘)
print(a_eles)
cap = 1
for ele in a_eles:
print(‘开始下载第%d章节‘%cap)
cap+=1
title = ele.string
content_url = ‘http://www.shicimingju.com‘+ele[‘href‘]
content = parse_content(content_url)
with open(‘./sanguo.txt‘,‘w‘) as fp:
fp.write(title+":"+content+‘\n\n\n\n\n‘)
print(‘结束下载第%d章节‘%cap)
标签:hit 中文乱码问题 正则 大小写 数字 查看 his 浏览器 target
原文地址:https://www.cnblogs.com/sunxiuwen/p/10111431.html