标签:字节 info 区别 gnu 另一个 方案 输入参数 流行 ble
Hadoop与Google一样,都是小孩命名的,是一个虚构的名字,没有特别的含义。从计算机专业的角度看,Hadoop是一个分布式系统基础架构,由Apache基金会开发。Hadoop的主要目标是对分布式环境下的“大数据”以一种可靠、高效、可伸缩的方式处理。设想一个场景,假如您需要grep一个100TB的大数据文件,按照传统的方式,会花费很长时间,而这正是Hadoop所需要考虑的效率问题。 关于Hadoop的结构,有各种不同的说法。我们这里简单的理解为Hadoop主要由三部分组成:HDFS(Hadoop Distributed File System),MapReduce与Hbase。1.Hadoop组件之一:HDFS分布式文件系统具有哪些优点? HDFS作为一种分布式文件系统,它和现有的分布式文件系统有很多共同点。比如,Hadoop文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。对于Client端而言,HDFS就像一个传统的分级文件系统,可以创建、删除、移动或重命名文件等等。与此同时,HDFS与其他的分布式文件系统的区别也是显而易见的。首先,HDFS设计目标之一是适合运行在通用硬件(commodity hardware)上的分布式文件系统。HDFS假设的硬件错误不是异常,而是常态。因为HDFS面向的是成百上千的服务器集群,每台服务器上存储着文件系统的部分数据,并且这些机器的价格都很低廉。这就意味着总是有一部分硬件因各种原因而无法工作。因此,错误检测和快速、自动的恢复是HDFS最核心的架构目标。从这个角度说,HDFS具有高度的容错性。 第二,HDFS的另一个设计目标是支持大文件存储。与普通的应用不同,HDFS应用具有很大的数据集,一个典型HDFS文件大小一般都在G字节至T字节。这就意味着HDFS应该能提供比较高的数据传输带宽与数据访问吞吐量。相应的,HDFS开放了一些POSIX的必须接口,容许流式访问文件系统的数据。 第三,HDFS还要解决的一个问题是高数据吞吐量。HDFS采用的是“一次性写,多次读”这种简单的数据一致性模型。换句话说,文件一旦建立后写入,就不需要再更改了。网络爬虫程序就很适合使用这样的模型。 第四,移动计算环境比移动数据划算。HDFS提供了API,以便把计算环境移动到数据存储的地方,而不是把数据传输到计算环境运行的地方。这对于数据大文件尤其适用,可以有效减少网络的拥塞、提高系统的吞吐量。HDFS的体系结构与工作流程 下面简单看一下HDFS的结构。图1所示为HDFS的体系结构图。HDFS采用的是Master/Slave架构。 NameNode节点作为Master服务器,有三部分功能。第一:处理来自客户端的文件访问。第二:管理文件系统的命名空间操作,如‘打开‘、‘关闭‘、‘重命名‘等。第三:负责数据块到数据节点之间的映射。从这个意义上说,它扮演中心服务器的角色。 DataNode节点作为Slave服务器,同样有三部分功能。第一:管理挂载在节点上的存储设备。第二:响应客户端的读写请求。第三:从内部看,每个文件被分成一个或多个数据块,被存放到一组DataNode,在Namenode的统一调度下进行数据块的创建、删除和复制。标签:字节 info 区别 gnu 另一个 方案 输入参数 流行 ble
原文地址:http://blog.51cto.com/13981400/2330443