标签:contain fir sam art acm lse int either 不同
Problem Description
Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with p = 1, does his multiplication, then Ollie multiplies the number, then Stan and so on. Before a game starts, they draw an integer 1 < n < 4294967295 and the winner is who first reaches p >= n.
Input
Each line of input contains one integer number n.
Output
For each line of input output one line either
Stan wins.
or
Ollie wins.
assuming that both of them play perfectly.
Sample Input
162
17
34012226
Sample Output
Stan wins.
Ollie wins.
Stan wins.
Source
University of Waterloo Local Contest 2001.09.22
思路
跟巴什博奕不同的是,这里是乘法,但是思路差不多
可取区间在\([2,9]\),显然如果这是Stan的必胜段,而\([10,18]\)是Stan的必败段,这样一次博弈就完成了,后面的状态要得出来也可以,\([19,162]\)为Stan的必胜段,更后面的情况可以归结到\([1,18]\)的讨论(巴什博奕也是归结到前(1+m))的讨论
上线分别是乘以2,9在变化是因为两个人的扩张策略不一样,Stan先手肯定是尽量乘以大的赢得概率大,从Ollie的角度想,就要乘以小的来尽可能阻止Stan赢
代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
double n;
while(cin >> n)
{
while(n>18) n/=18;
if(n<=9)
cout << "Stan wins.\n";
else
cout << "Ollie wins.\n";
}
return 0;
}
Hdoj 1517.A Multiplication Game 题解
标签:contain fir sam art acm lse int either 不同
原文地址:https://www.cnblogs.com/MartinLwx/p/10126207.html