标签:data highlight roc bsp ict sha ssi 预测 target
1. 导入boston房价数据集
2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
#导入boston房价数据集 from sklearn.datasets import load_boston import numpy as np boston = load_boston() boston.keys() boston.target import pandas as pd df = pd.DataFrame(boston.data) df from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(x.reshape(-1,1),y) w = lineR.coef_ #x前的系数 b = lineR.intercept_ #截距 print(w) print(b) from matplotlib import pyplot as plt x = boston.data[:,5] #变量 y = boston.target #房价 plt.figure(figsize=(10,6)) plt.scatter(x,y) plt.plot(x,9.1*x-34.6,‘r‘) plt.show()
3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。
from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(boston.data,y) w = lineR.coef_ b = lineR.intercept_ print(w) print(b)
4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
import matplotlib.pyplot as plt x = boston.data[:,12].reshape(-1,1) y = boston.target plt.figure(figsize=(10,6)) plt.scatter(x,y) from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(x,y) y_pred = lineR.predict(x) plt.plot(x,y_pred) print(lineR.coef_,lineR.intercept_) plt.show() from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) x_poly = poly.fit_transform(x) lrp = LinearRegression() lrp.fit(x_poly,y) y_poly_pred = lrp.predict(x_poly) plt.scatter(x,y) plt.scatter(x,y_pred) plt.scatter(x,y_poly_pred) plt.show()
标签:data highlight roc bsp ict sha ssi 预测 target
原文地址:https://www.cnblogs.com/qq279666943/p/10129712.html