标签:tar 模型 function comment val 技术 target 之间 .data
1
2
3
4
|
from sklearn.datasets import load_boston boston = load_boston() boston.keys() print (boston.data) |
2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
import pandas as pd #导包 pd.DataFrame(boston.data) #预处理获取斜率 from sklearn.linear_model import LinearRegression LineR = LinearRegression() LineR.fit(x.reshape( - 1 , 1 ),y) w = LineR.coef_ #图形化显示 x = data[:, 5 ] y = boston.target import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w * x + b, ‘G‘ ) plt.show() |
3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(boston.data,y) w = lineR.coef_ b = lineR.intercept_ import matplotlib.pyplot as plt x = boston.data[:, 12 ].reshape( - 1 , 1 ) y = boston.target plt.figure(figsize = ( 10 , 6 )) #指定显示图大小 plt.scatter(x,y) from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(x,y) y_pred = lineR.predict(x) plt.plot(x,y_pred, ‘G‘ ) print (lineR.coef_,lineR.intercept_) plt.show() |
4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
xx = data[:, 12 ].reshape( - 1 , 1 ) plt.scatter(xx,y) plt.show() lr12 = LinearRegression() lr12.fit(xx,y) w = lr12.coef_ b = lr12.intercept_ plt.scatter(xx,y) plt.plot(xx,w * xx + b, ‘G‘ ) plt.show() from sklearn.preprocessing import PolynomialFeatures p = PolynomialFeatures() p.fit(xx) x_poly = p.transform(xx) lrp = LinearRegression() lrp.fit(x_poly,y) lrp.coef_ lrp.intercept_ lrp = LinearRegression() lrp.fit(x_poly,y) y_poly = lrp.predict(x_poly) plt.scatter(xx,y) plt.plot(xx,w * xx + b, ‘G‘ ) plt.scatter(xx,y_poly) plt.show() lrp.coef_ |
标签:tar 模型 function comment val 技术 target 之间 .data
原文地址:https://www.cnblogs.com/yulinzzz/p/10134151.html