标签:flow 数据集 color .com 初始 ble com code 最大
Tensorflow practice lesson 3-2
1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 # 载入数据集 5 mnist = input_data.read_data_sets("MNIST_data", one_hot=True, source_url=‘http://yann.lecun.com/exdb/mnist/‘) 6 7 # 定义两个变量,表示每个批次的大小,在进行算法训练的过程中,将会加载一个批次的文件进行训练 8 batch_size = 100 9 # 计算批次的数量 10 n_batch = mnist.train.num_examples // batch_size 11 12 # 定义两个placeholder 13 x = tf.placeholder(tf.float32, [None, 784]) 14 y = tf.placeholder(tf.float32, [None, 10]) 15 16 # 创建一个简单的神经元网络 17 W = tf.Variable(tf.zeros([784, 10])) 18 b = tf.Variable(tf.zeros([10])) 19 prediction = tf.nn.softmax(tf.matmul(x, W) + b) 20 21 # 二次代价函数 22 loss = tf.reduce_mean(tf.square(y - prediction)) 23 # 使用梯度下降法最小化loss的值 24 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) 25 26 # 初始化变量 27 init = tf.global_variables_initializer() 28 29 # 结果存放在一个布尔型的列表中 30 # arg_max 返回一维张量中最大值所在的位置 31 correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(prediction, 1)) 32 33 # 求准确率 34 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 35 36 # 进行训练 37 with tf.Session() as sess: 38 sess.run(init) 39 for epoch in range(21): 40 for batch in range(n_batch): 41 batch_xs, batch_ys = mnist.train.next_batch(batch_size) 42 sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) 43 acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) 44 print("Iter " + str(epoch) + ", Test Accuracy " + str(acc))
标签:flow 数据集 color .com 初始 ble com code 最大
原文地址:https://www.cnblogs.com/StevenSun1991/p/10134722.html