码迷,mamicode.com
首页 > 其他好文 > 详细

numpy 辨异 (五)—— numpy ravel vs numpy flatten

时间:2018-12-18 19:47:48      阅读:273      评论:0      收藏:0      [点我收藏+]

标签:targe   target   overflow   基础   默认   数组   name   tar   down   

首先声明两者所要实现的功能是一致的(将多维数组降位一维),两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是视图(view,也颇有几分C/C++引用reference的意味),会影响(reflects)原始矩阵。

1. 两者的功能

>>> x = np.array([[1, 2], [3, 4]])
>>> x
array([[1, 2],
       [3, 4]])
>>> x.flatten()
array([1, 2, 3, 4])
>>> x.ravel()
array([1, 2, 3, 4])
                    两者默认均是行序优先
>>> x.flatten(‘F‘)
array([1, 3, 2, 4])
>>> x.ravel(‘F‘)
array([1, 3, 2, 4])

>>> x.reshape(-1)
array([1, 2, 3, 4])
>>> x.T.reshape(-1)
array([1, 3, 2, 4])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

2. 两者的区别

>>> x = np.array([[1, 2], [3, 4]])
>>> x.flatten()[1] = 100
>>> x
array([[1, 2],
       [3, 4]])            # flatten:返回的是拷贝
>>> x.ravel()[1] = 100
>>> x
array([[  1, 100],
       [  3,   4]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

References

[1] What is the difference between flatten and ravel functions in numpy?

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!希望你也加入到我们人工智能的队伍中来!http://www.captainbed.net

numpy 辨异 (五)—— numpy ravel vs numpy flatten

标签:targe   target   overflow   基础   默认   数组   name   tar   down   

原文地址:https://www.cnblogs.com/siwnhwxh/p/10138898.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!