码迷,mamicode.com
首页 > 其他好文 > 详细

回归模型与房价预测

时间:2018-12-21 00:59:49      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:RoCE   回归   model   预测   图形化显示   orm   sha   模型   int   

#导入boston房价数据集
from sklearn.datasets import load_boston
import pandas as pd

boston = load_boston()
df = pd.DataFrame(boston.data) 

#一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

x =boston.data[:,5]
y = boston.target
LinR = LinearRegression()
LinR.fit(x.reshape(-1,1),y)
w=LinR.coef_
b=LinR.intercept_
print(w,b)

plt.scatter(x,y)
plt.plot(x,w*x+b,‘orange‘)
plt.show()

#多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。
x = boston.data[:,12].reshape(-1,1)
y = boston.target
plt.figure(figsize=(10,6))
plt.scatter(x,y)

lineR = LinearRegression()
lineR.fit(x,y)
y_pred = lineR.predict(x)
plt.plot(x,y_pred,‘r‘)
print(lineR.coef_,lineR.intercept_)
plt.show()

#一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
x_poly = poly.fit_transform(x)
print(x_poly)
lrp = LinearRegression()
lrp.fit(x_poly,y)
y_poly_pred = lrp.predict(x_poly)
plt.scatter(x,y)
plt.scatter(x,y_pred)
plt.scatter(x,y_poly_pred)
plt.show()技术分享图片

回归模型与房价预测

标签:RoCE   回归   model   预测   图形化显示   orm   sha   模型   int   

原文地址:https://www.cnblogs.com/lt1019/p/10153354.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!