标签:dev 数据 定义 lob 初始 1.4 tdd 没有 none
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值。
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
shape: 输出张量的形状,必选
mean: 正态分布的均值,默认为0
stddev: 正态分布的标准差,默认为1.0
dtype: 输出的类型,默认为tf.float32
seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
name: 操作的名称
以下程序定义一个w1变量:
# -*- coding: utf-8 -*-)
import tensorflow as tf
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# sess.run(tf.initialize_all_variables()) #比较旧一点的初始化变量方法
print w1
print sess.run(w1)
输出:
<tf.Variable ‘Variable:0‘ shape=(2, 3) dtype=float32_ref>
[[-0.81131822 1.48459876 0.06532937]
[-2.4427042 0.0992484 0.59122431]]
变量w1声明之后并没有被赋值,需要在Session中调用run(tf.global_variables_initializer())方法初始化之后才会被具体赋值。
tf中张量与常规向量不同的是执行"print w1"输出的是w1的形状和数据类型等属性信息,获取w1的值需要调用sess.run(w1)方法。
---------------------
作者:-牧野-
来源:CSDN
原文:https://blog.csdn.net/dcrmg/article/details/79028043
版权声明:本文为博主原创文章,转载请附上博文链接!
标签:dev 数据 定义 lob 初始 1.4 tdd 没有 none
原文地址:https://www.cnblogs.com/fpzs/p/10153855.html