码迷,mamicode.com
首页 > 其他好文 > 详细

分类器以及归一化

时间:2018-12-22 14:55:30      阅读:233      评论:0      收藏:0      [点我收藏+]

标签:形式   目的   数量级   特征   数据   img   求和   比例   判断   

分类器的本质是什么?其实就是根据近邻算法来判断是否属于同一个区域范围;

近邻算法的本质是什么?是距离,距离分两种,一种是曼哈顿距离,一阶算法;另外一种是欧式距离,二阶算法;

距离怎么判断?对于监督学习,已经知道了几种分类,那么针对这些分类,距离那个分类(样本)近,就是什么分类。

所以推演到这里离,分类器计算本质其实就是根据特征来计算和已知分类样本的距离,距离那个分类样本更近,就是什么分类。

那么物品的距离怎么来算,我们知道可以通过欧式/曼哈顿距离来求,但是怎么计算物品间距离?特征,根据特征来计算距离。物品间的距离就是各个特征之间距离的某种形式的累加(求差再求和—曼哈顿,或者求差平方再求和再开放—欧式)。

但是在计算的时候有问题,那就是不同特征之间的数量级可能不同,比如身高是1~2(m),但是收入确实5000~100000(元),这会导致一个问题,就是量纲小的特征的比重将会变小,无形间好像把量纲大的赋予了极大的权重,但是这个并不是我们想要的。于是这里引入了归一化(normalization),归一化的目的就是要将特征等比例将大量纲的特征的取值范围,按照某种规则映射为范围 [-1, 1];这样大家的量纲就接近了。

归一化的计算过程

首先求取均值;

然后,求取标准差

技术分享图片

最后计算标准分

技术分享图片

没完事,在归一化的过程中同样有的时候,对于同一个特征,他是会有一些离群点,这些点将会导致求取平均值的时候严重拉高拉低均值,这个时候就需要采用中位数的方式来替换"均值";中位数就是将数据从小到大排列,取中间的一位(奇数)或者两位数(偶数)的均值来作为"mean"。

分类器以及归一化

标签:形式   目的   数量级   特征   数据   img   求和   比例   判断   

原文地址:https://www.cnblogs.com/xiashiwendao/p/10160832.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!