码迷,mamicode.com
首页 > 其他好文 > 详细

2、单变量线性回归

时间:2018-12-23 11:15:08      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:变量   pre   des   价格   img   white   技术分享   输入   bubuko   

 

引例:以房价和房屋面积作为训练集,学习如何预测房价

  • m 代表训练集的数量
  • x 代表输入变量(特征),这里代表房屋面积
  • y 代表输出变量(标签),这里代表房价
  • (x, y)表示一个训练样本
  • (x^(i), y^(i))表示第i个训练样本

单变量线性回归算法的实现过程

  • 训练集(房屋面积x, 房价y)— —>学习算法— —>h(x)假设函数
  • 房屋面积(x)— —>h(x)假设函数— —> 预测房价(y)
  • 假设函数:h(x) = w1x + b

单变量线性回归最常用的损失函数:均方误差MSE

假设函数和房屋价格的实际价格的差值,差值越小损失越小

均方误差(MSE) = ∑(h(x)-y)^2/m

     = ∑(w1x + b -y)^2/m

                  =J(w1, b), 其中 x∈(1, m) 

即求一组w1,b使J(w1, b)(MSE)最小

  • (x, y)代表样本
  • x 代表输入变量(特征),这里代表房屋面积
  • y 代表输出变量(标签),这里代表房价
  • m 代表训练集(样本)的数量
  • w1代表权重,b代表偏差(y轴截距)

假设函数和损失函数

  • h(x) = w1x + b, x是变量
  • J(w1, b) = ∑(w1x+b-y)^2/m,w1, b是变量

梯度下降Gradient descent

对于J(w1, b)初始化选择任意w1,b,慢慢改变w1,b的值使得J(w1, b)取得最小值或者局部最小值

 

梯度下降w1的值变化:  w1 := w1 - aJ(w1,b)’, 对于此方程当J(w1,b)’0时w1不变,即找到最小值或者局部最小值

  • 其中 := 赋值
  • a 学习速率(learning rate)
  • J(w1,b)’ :函数在w1, b点的导数

技术分享图片

 

 

学习速率learning rate

学习速率过小

技术分享图片

学习速率过大

技术分享图片

 

线性回归算法实现

结合假设函数、损失函数、梯度下降函数

  • h(x) = w1x + b
  • J(w1, b)=∑(w1x + b -y)^2/m
  • w1 := w1 - aJ(w1,b)’

得出线性回归算法:

  • w1 := w1 - 2ax∑(w1x + b -y)^/m
  • b:=b- 2a∑(w1x + b -y)^/m

W1和b同时更新

 

2、单变量线性回归

标签:变量   pre   des   价格   img   white   技术分享   输入   bubuko   

原文地址:https://www.cnblogs.com/jp-mao/p/10163141.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!