标签:tor 时间复杂度 stream section time oss int define mes
atan2(y,x)
的值域是\((-\pi,\pi]\),返回相当于\(x+yi\)的幅角。
半平面交维护的是点集,用双端队列维护。
时间复杂度为排序的\(O(n \log n)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll;
struct Point
{
double x,y;
Point(double x=0,double y=0)
:x(x),y(y){}
};
typedef Point Vector;
Vector operator+(co Vector&A,co Vector&B)
{
return Vector(A.x+B.x,A.y+B.y);
}
Vector operator-(co Vector&A,co Vector&B)
{
return Vector(A.x-B.x,A.y-B.y);
}
Vector operator*(co Vector&A,double p)
{
return Vector(A.x*p,A.y*p);
}
Vector operator/(co Vector&A,double p)
{
return Vector(A.x/p,A.y/p);
}
double Dot(co Vector&A,co Vector&B)
{
return A.x*B.x+A.y*B.y;
}
double Cross(co Vector&A,co Vector&B)
{
return A.x*B.y-A.y*B.x;
}
double Length(co Vector&A)
{
return sqrt(Dot(A,A));
}
Vector Normal(co Vector&A)
{
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
double PolygonArea(vector<Point> p)
{
int n=p.size();
double area=0;
for(int i=1;i<n-1;++i)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
}
struct Line
{
Point P;
Vector v;
Line(Point P=0,Vector v=0)
:P(P),v(v){}
double angle()co
{
return atan2(v.y,v.x);
}
bool operator<(co Line&rhs)co
{
return angle()<rhs.angle();
}
};
bool OnLeft(co Line&L,co Point&p)
{
return Cross(L.v,p-L.P)>0;
}
Point LineLineIntersection(co Line&a,co Line&b)
{
Vector u=a.P-b.P;
double t=Cross(b.v,u)/Cross(a.v,b.v);
return a.P+a.v*t;
}
co double INF=1e8;
co double eps=1e-6;
vector<Point>HalfplaneIntersection(vector<Line>L)
{
int n=L.size();
sort(L.begin(),L.end());
int first,last;
vector<Point>p(n);
vector<Line>q(n);
vector<Point>ans;
q[first=last=0]=L[0];
for(int i=1;i<n;++i)
{
while(first<last&&!OnLeft(L[i],p[last-1]))
--last;
while(first<last&&!OnLeft(L[i],p[first]))
++first;
q[++last]=L[i];
if(fabs(Cross(q[last].v,q[last-1].v))<eps)
{
--last;
if(OnLeft(q[last],L[i].P))
q[last]=L[i];
}
if(first<last)
p[last-1]=LineLineIntersection(q[last-1],q[last]);
}
while(first<last&&!OnLeft(q[first],p[last-1]))
--last;
if(last-first<=1)
return ans;
p[last]=LineLineIntersection(q[last],q[first]);
for(int i=first;i<=last;++i)
ans.push_back(p[i]);
return ans;
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
return 0;
}
标签:tor 时间复杂度 stream section time oss int define mes
原文地址:https://www.cnblogs.com/autoint/p/10164001.html